Câu hỏi:

29/01/2021 804

Tính tổng phần ảo các số phức z thỏa mãn |z| = 5 và phần thực của nó bằng 2 lần phần ảo.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn A.

Gọi số phức cần tìm là z = x + yi.

Ta có:

 hay x2 + y2 = 25     (*)

Mặt khác: Số phức có phần thực của nó bằng 2 lần phần ảo nên x = 2y

thay vào phương trình (*) ta được: 5y= 25 hay  

Vậy số phức cần tìm là: 

Do đó tổng các phần ảo là: 5+-5=0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn B.

  z1+ z2= 0  nên z; z2 là hai số phức đối nhau, do đó hai điểm A: B đối xứng qua gốc O ( tức O là trung điểm của đoạn thẳng AB).

Lại có | z1| = | z2| = | z3|

Vậy tam giác ABC có độ dài đường trung tuyến bằng một nửa cạnh huyền nên vuông tại C.

Lời giải

Chọn B.

Gọi số phức cần tìm là z = a + bi.

Ta có ( 1 - 3i) z = ( 1 - 3i) ( a + bi)

= a + 3b - 3ai + bi = a + 3b + ( b - 3a) i

+ Do ( 1 - 3i) z là số thực nên b - 3a = 0  hay b = 3a

+ ta có  |a – 2 + (-b + 5)i| = 1

Hay ( a - 2) 2 + ( 5 - 3a) 2 = 1

(thỏa mãn)

Vậy có hai số phức z thỏa mãn là z = 2 + 6i và z=75+215i

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP