Câu hỏi:

07/08/2020 852

Tìm a để hàm số sau có giới hạn khi x2

f(x)=x2+ax+2    khi  x>22x2x+1    khi  x2

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn C.

Ta có:

limx2+f(x)=limx2+(x2+ax+2)=2a+6.

limx2f(x)=limx2(2x2x+1)=7.

Hàm số có giới hạn khix2limx2+f(x)=limx2f(x)2a+6=7a=12.

Vậy a=12 là giá trị cần tìm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm giới hạn F=limxx(4x2+1x)

Xem đáp án » 21/01/2021 7,362

Câu 2:

 Chọn kết quả đúng của limx01x22x3

Xem đáp án » 21/01/2021 5,019

Câu 3:

limtat4-a4t-a bằng: 

Xem đáp án » 21/01/2021 4,893

Câu 4:

Chọn kết quả đúng trong các kết quả sau của limx1x2+2x+12x3+2

Xem đáp án » 08/08/2020 2,872

Câu 5:

limx-2x4-4x2+87x2+9x-2 bằng: 

Xem đáp án » 21/01/2021 2,321

Câu 6:

Giới hạn limx-x2-x-4x2+12x+3 bằng 

Xem đáp án » 07/08/2020 2,018

Câu 7:

limx+xx2+16-x bằng: 

Xem đáp án » 21/01/2021 1,792

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn