Cho tam giác ABC nhọn. Vẽ tia Ax nằm trong góc BAC, Ax cắt BC ở M. Gọi E và F theo thứ tự là hình chiếu của B và C trên tia Ax. So sánh BE + CF với BC.
Quảng cáo
Trả lời:

Vì BE Ax tại E nên tam giác BEM vuông tại E BM > BE (quan hệ đường xiên và đường vuông góc)
Vì CF Ax tại F nên tam giác CFM vuông tại F CM > CF (quan hệ đường xiên và đường vuông góc)
Khi đó ta có: BM + CM > BE + CF
Mà BM + CM = BC (M thuộc BC)
Do đó: BC > BE + CF hay BE + CF < BC.
Chọn đáp án A
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì BH là đường vuông góc và AH là đường xiên nên AH > BH
Chọn đáp án C.
Lời giải
Tam giác ABC vuông tại A có BC là cạnh huyền AC < BC
Tam giác AHC vuông tại H có AC là cạnh huyền AH < AC
Do đó ta có: AH < AC < BC
Vậy AH < BC.
Chọn đáp án C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.