Câu hỏi:
12/07/2024 24,590Cho tam giác ABC có trực tâm H và nội tiếp đường tròn (O) đường kính AD
a, Chứng minh BHCD là hình bình hành
b, Kẻ đường kính OI vuông góc BC tại I. Chứng minh Ị, H, D thẳng hàng
c, Chứng minh AH = 2OI
Câu hỏi trong đề: Chương 2 - Bài 2: Đường kính và dây của đường tròn !!
Quảng cáo
Trả lời:
a, Ta có: BD//CH vì cùng vuông góc với AB; BH//CD vì cùng vuông góc với AC
b, Ta có I là trung điểm của BC => I là trung điểm HD
c, Ta có OI là đường trung bình ∆AHD => AH = 2OI
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Kẻ OECD, ECD
Ta có: CO=11cm, CE= 9cm => OE = cm
OM=7cm => ME=3cm
=> MC=6cm, MD=12cm; hoặc MD= 6cm, MC= 12cm
Lời giải
a, BHCK có I là trung điểm hai đường chéo
b, Ta có ∆ABK, ∆ACK vuông tại B và C nên A,B,K,C nằm trên đường tròn đường kính AK
c, Ta có OI là đường trung bình của ∆AHK => OI//AH
d, Gọi AH cắt BC tại M. Ta có BE.BA = BM.BC và CA.CD = CM.BC => ĐPCM
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.