Câu hỏi:

12/07/2024 40,630

Cho nửa đường tròn tâm O đường kính AB và M là điểm nằm trên (O). Tiếp tuyến tại M cắt tiếp tuyến tại A và B của (O) lần lượt ở C và D. Đường thẳng AM cắt OC tại E, đường thẳng BM cắt OD tại F

a, Chứng minh: COD^=900

b, Tứ giác MEOF là hình gì?

c, Chứng minh AB là tiếp tuyến của đường tròn đường kính CD

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a, Dễ thấy AMB^=900 hay EMF^=900 tiếp tuyến CM,CA

=> OCAM => OEM^=900 Tương tự => OFM^=900

Chứng minh được ∆CAO = ∆CMO => AOC^=MOC^

=> OC là tia phân giác của AMO^

Tương tự OD là tia phân giác của BOM^ suy ra OCOD <=> COD^

b, Do ∆AOM cân tại O nên OE là đường phân giác đồng thời là đường cao

=> OEM^=900 chứng minh tương tự OFM^=900

Vậy MEOF là hình chữ nhật

c, Gọi I là trung điểm CD thì I là tâm đường tròn đường kính CD và IO=IC=ID. Có ABDC là hình thang vuông tại A và B nên IO//AC//BD và IO vuông góc với AB. Do đó AB là tiếp tuyến của đường tròn đường kính CD.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn (O) đường kính AB. Lấy điểm M thuộc (O) sao cho MA < MB. Vẽ dây MN vuông góc với AB tại H. Đường thẳng AN cắt BM tại C. Đường thẳng qua C vuông góc với AB tại K và cắt BN tại D

a, Chứng minh A, M, C, K cùng thuộc đường tròn

b, Chứng minh BK là tia phân giác của góc MBN

c, Chứng minhKMC cân và KM là tiếp tuyến của (O)

d, Tìm vị trí của M trên (O) để tứ giác MNKC trở thành hình thoi

Xem đáp án » 12/07/2024 39,546

Câu 2:

Cho điểm M nằm trên nửa đường tròn tâm O đường kính AB. Qua M vẽ tiếp tuyến xy và gọi C, D lần lượt là hình chiếu vuông góc của A, B trên xy. Xác định vị trí của điểm M trên (O) sao diện tích tứ giác ABCD đạt giá trị lớn nhất

Xem đáp án » 12/07/2024 9,835

Câu 3:

Cho đường tròn (O) đường kính AB = 10 cm và Bx là tiếp tuyến của (O). Gọi C là một điểm trên (O) sao cho CAB^=300 và E là giao điểm của các tia AC, Bx

a, Tính độ dài các đoạn thẳng AC, CE vả BC

b, Tính độ dài đoạn thẳng BE

Xem đáp án » 12/07/2024 6,930

Câu 4:

Cho tam giác ABC cân tại A, nội tiếp đường tròn tâm O. Vẽ hình bình hành ABCD. Tiếp tuyến tại C của đường tròn cắt đường thẳng AD tại N. Chứng minh:

a, Đường thẳng AD là tiếp tuyến của (O)

b, Ba đường thẳng AC, BDON đồng quy

Xem đáp án » 12/07/2024 5,850

Câu 5:

Cho tam giác ABC vuông tại A có AH là đường cao. Gọi BD, CE là các tiếp tuyến của đường tròn (A; AH) với D, E là các tiếp diêm. Chứng minh:

a, Ba điểm D, A, E thẳng hàng

b, DE tiếp xúc với đường tròn đường kính BC

Xem đáp án » 12/07/2024 4,028

Câu 6:

Cho đường tròn (O; 6 cm) và điểm A nằm trên (O). Qua A kẻ tiếp tuyến Ax với đường tròn và lấy điểm B trên tia Ax sao cho AB = 8 cm

a, Tính độ dài đoạn thẳng OB

b, Qua A kẻ đường vuông góc với OB, cắt (O) tại C. Chứng minh BC là tiếp tuyến của (O)

Xem đáp án » 11/07/2024 3,820

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store