Cho tam giác ABC vuông tại A có AH là đường cao. Gọi BD, CE là các tiếp tuyến của đường tròn (A; AH) với D, E là các tiếp diêm. Chứng minh:
a, Ba điểm D, A, E thẳng hàng
b, DE tiếp xúc với đường tròn đường kính BC
Quảng cáo
Trả lời:
a, Vì BH, BD là tiếp tuyến của (A;AH)
=>
Vì CH,CE là tiếp tuyến của (A;AH)
=>
=>
=> D,A,E thẳng hàng
b, HS tự làm
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a, Dễ thấy hay tiếp tuyến CM,CA
=> OCAM => Tương tự =>
Chứng minh được ∆CAO = ∆CMO =>
=> OC là tia phân giác của
Tương tự OD là tia phân giác của suy ra OCOD <=>
b, Do ∆AOM cân tại O nên OE là đường phân giác đồng thời là đường cao
=> chứng minh tương tự
Vậy MEOF là hình chữ nhật
c, Gọi I là trung điểm CD thì I là tâm đường tròn đường kính CD và IO=IC=ID. Có ABDC là hình thang vuông tại A và B nên IO//AC//BD và IO vuông góc với AB. Do đó AB là tiếp tuyến của đường tròn đường kính CD.
Lời giải
a, => C, K, A, M thuộc đường tròn đường kính AC
b, ∆MBN cân tại B có BA là đường cao, trung tuyến và phân giác
c, ∆BCD có BKCD và CNBN nên A là trực tâm của ∆BCD => D,A,M thảng hàng
Ta có ∆DMC vuông tại M có MK là trung tuyến nên ∆KMC cân tại K
=>
Lại có nên
Vậy mà OM là bán kính nên KM là tiếp tuyến của (O)
d, MNKC là hình thoi
<=> MN = CK và CM = CK
<=> ∆KCM cân
<=> <=> AM = R
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.