Câu hỏi:
13/07/2024 7,309Cho đường tròn (O; R) với A là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyế thứ hai MB với đường tròn (O). Gọi I là trung điểm MA, K là giao điểm của BI với (O)
a, Chứng minh các tam giác IKA và IAB đồng dạng. Từ đó suy ra tam giác IKM đồng dạng với tam giác IMB
b, Giả sử MK cắt (O) tại C. Chứng minh BC song song MA
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a, ∆IAK:∆IBA =>
Mà IA = IM =>
=> ∆IKM:∆IMB
b, Chứng minh được: => BC//MA(đpcm)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hai đường tròn (O) và (I) cắt nhau ở C và D, trong đó tiếp tuyến chung MN song song với cát tuyến EDF, M và E thuộc (O), N và F thuộc (I), D nằm giữa E và F. Gọi K, H theo thứ tự là giao điểm của NC, MC với EF. Gọi G là giao điểm của EM, FN. Chứng minh:
a, Các tam giác GMN và DMN bằng nhau
b, GD là đường trung trực của KH
Câu 2:
Cho các đường tròn (O; R) và (O’; R’) tiếp xúc trong với nhau tại A (R > R’). Vẽ đường kính AB của (O), AB cắt (O’) tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O’), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:
a, AP là phân giác của
b, CP và BR song song với nhau
Câu 3:
Cho tam giác ABC nội tiếp đường tròn (O) và AB < AC. Đường tròn (I) đi qua B và C, tiếp xúc với AB tại B cắt đường thẳng AC tại D. Chứng minh OA và BD vuông góc với nhau
về câu hỏi!