Dạng 2: Chứng minh hai đường thẳng song song, hai đường thẳng vuông góc, một tia là tiếp tuyến của đường tròn
23 người thi tuần này 5.0 4.6 K lượt thi 4 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 5
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 4
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 3
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 2
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 1
Bộ 5 đề thi cuối kì 1 Toán 9 Cánh diều (Tự luận) có đáp án - Đề 5
Bộ 5 đề thi cuối kì 1 Toán 9 Cánh diều (Tự luận) có đáp án - Đề 4
Bộ 5 đề thi cuối kì 1 Toán 9 Cánh diều (Tự luận) có đáp án - Đề 3
Danh sách câu hỏi:
Lời giải
a, Sử dụng AQ//O'P
=> => Đpcm
b, CP//BR (cùng vuông góc AR)
Lời giải
a, ∆IAK:∆IBA =>
Mà IA = IM =>
=> ∆IKM:∆IMB
b, Chứng minh được: => BC//MA(đpcm)
Lời giải
a, Ta có: ,
=> ∆GMN = ∆DMN
b, Chứng minh được MN là đường trung trực của GD
=> GDEF (1)
Gọi J là giao điểm của DC và MN
Ta có
Mặt khác: JM = JN (cùng bằng )
=> DH = DK (2). Từ (1) và (2) Þ ĐPCM
Lời giải
Kẻ đường kính AF
Chứng minh
=> AOBD