Cho hai đường tròn (O) và (I) cắt nhau ở C và D, trong đó tiếp tuyến chung MN song song với cát tuyến EDF, M và E thuộc (O), N và F thuộc (I), D nằm giữa E và F. Gọi K, H theo thứ tự là giao điểm của NC, MC với EF. Gọi G là giao điểm của EM, FN. Chứng minh:
a, Các tam giác GMN và DMN bằng nhau
b, GD là đường trung trực của KH
Câu hỏi trong đề: Chương 3 - Bài 4: Góc tạo bởi tia tiếp tuyến và dây cung !!
Quảng cáo
Trả lời:
a, Ta có: ,
=> ∆GMN = ∆DMN
b, Chứng minh được MN là đường trung trực của GD
=> GDEF (1)
Gọi J là giao điểm của DC và MN
Ta có
Mặt khác: JM = JN (cùng bằng )
=> DH = DK (2). Từ (1) và (2) Þ ĐPCM
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a, ∆IAK:∆IBA =>
Mà IA = IM =>
=> ∆IKM:∆IMB
b, Chứng minh được: => BC//MA(đpcm)
Lời giải
a, Sử dụng AQ//O'P
=> => Đpcm
b, CP//BR (cùng vuông góc AR)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.