Câu hỏi:

13/07/2024 6,562 Lưu

Cho tam giác ABC cân tại A, trung tuyến AM. Gọi I là trung điểm của AC, K là điểm đối xứng của điểm M qua điểm I.

a) Tứ giác AMCK là hình gì ?

b) Tứ giác AKMB là hình gì ?

c) Có trường hợp nào của tam giác ABC để tứ giác AKMB là hình thoi không ? Vì sao ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Áp dụng tính chất của tam giác cân cho DABC ta có: AM ^ MC và BM = MC

I là trung điểm của AC và K đối xứng với M qua I nên tứ giác AMCK  là hình bình hành

Lại có MK = AC (=2MI)

Þ Tứ giác AMCK là hình chữ nhật.

b) Vì tứ giác AMCK là hình chữ nhật (chứng minh ở a) Þ AK//MC và AK = MC = MB nên tứ giác AKMB là hình bình hành.

c) Nếu tứ giác AKMB là hình thoi thì BA = AK = KM= MB.

Þ DMBA cân tại B Þ BAM^=AMB^ = 900 Þ vô lý.

Vậy không có trường hợp nào của D ABC để AKMB là hình thoi.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) DDAE = DBAF (c.g.c)

DAE^=BAF^ và AE = AF

EAD^+EAB^=900 => EAB^+BAF^=900 

Þ DAEF vuông cân tại A.

b) DEAF vuông cân nên IA = IE = FI (1); DCFE vuông có IC là đường trung tuyến Þ IE = IC = IF (2);

Từ (1) và (2) suy ra Þ IA = IC nên I thuộc trung trực của AC hay I thuộc BD.

c) Do K đối xứng với A qua I nên I là trung điểm của AK.

Mà I là trung điểm của EF(gt) nên AFKE là hình bình hành, DAEF vuông cân tại A nên AI ^ EF.

Vậy AFKE là hình vuông.

Lời giải

a) Vì ABDE, ACFG là các hình vuông nên ta có E, A, C thẳng hàng và B, A, G cũng thẳng hàng (1) và EC = BG.

EBA^=AGC^= 450 (2).

Từ (1) và (2)

Suy ra EB//CG & EC = BG Þ EBCG là hình thang cân.

b) Chứng minh AEKG là hình chữ nhật, mà M là trung điểm EG nên K, A, M thẳng hàng.

c) Gọi H = MA Ç BC

Vì BEGC là hình thang cân nên DBEG = DEBC (c-g-c) Þ ECB^=EGB^ mà EGA^=MAG^=BAH^ 

Þ BAH^+ABC^=ECB^+ABC^ = 900 Þ MA ^BC tại H.

d) DABK = DBDC vì AB = DB, KA = EG = BC, BAK^=DBC^BKA^=BCD^ mà KA ^ BC Þ CD ^ BK.

Chứng minh tương tự ta cũng có BF ^ KC.

Þ DKBC cosBF, CD, AM là 3 đường cao Þ đồng quy tại trực tâm I