Câu hỏi:

13/07/2024 6,443

Cho tam giác ABC cân tại A, trung tuyến AM. Gọi I là trung điểm của AC, K là điểm đối xứng của điểm M qua điểm I.

a) Tứ giác AMCK là hình gì ?

b) Tứ giác AKMB là hình gì ?

c) Có trường hợp nào của tam giác ABC để tứ giác AKMB là hình thoi không ? Vì sao ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Áp dụng tính chất của tam giác cân cho DABC ta có: AM ^ MC và BM = MC

I là trung điểm của AC và K đối xứng với M qua I nên tứ giác AMCK  là hình bình hành

Lại có MK = AC (=2MI)

Þ Tứ giác AMCK là hình chữ nhật.

b) Vì tứ giác AMCK là hình chữ nhật (chứng minh ở a) Þ AK//MC và AK = MC = MB nên tứ giác AKMB là hình bình hành.

c) Nếu tứ giác AKMB là hình thoi thì BA = AK = KM= MB.

Þ DMBA cân tại B Þ BAM^=AMB^ = 900 Þ vô lý.

Vậy không có trường hợp nào của D ABC để AKMB là hình thoi.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) DDAE = DBAF (c.g.c)

DAE^=BAF^ và AE = AF

EAD^+EAB^=900 => EAB^+BAF^=900 

Þ DAEF vuông cân tại A.

b) DEAF vuông cân nên IA = IE = FI (1); DCFE vuông có IC là đường trung tuyến Þ IE = IC = IF (2);

Từ (1) và (2) suy ra Þ IA = IC nên I thuộc trung trực của AC hay I thuộc BD.

c) Do K đối xứng với A qua I nên I là trung điểm của AK.

Mà I là trung điểm của EF(gt) nên AFKE là hình bình hành, DAEF vuông cân tại A nên AI ^ EF.

Vậy AFKE là hình vuông.

Lời giải

a) E là điểm đối xứng của điểm A qua điểm D Þ A, D, E thẳng hàng và DA = DE Þ CD ^ AE tại trung điểm của AE Þ CA = CE Þ DCAE cân ở C.

Þ DAC^ = 450 Þ DACE vuông cân.

b) Áp dụng tính chất đường trung bình cho DHAE và giả thiết ABCD là hình vuông ta sẽ chứng minh được tứ giác BMNC là hình bình hành.

c) Do AH ^ BN,   mà NM//CB Þ NM ^ AB nên M là trực tâm của tam giác ANB.

d) M là trực tâm DABN nên BM ^ AN mà BM//CN Þ  ANC^= 900