Câu hỏi:
13/07/2024 18,582Cho hình vuông ABCD. Gọi E là điểm đối xứng của điểm A qua điểm D.
a) Chứng minh tam giác ACE là tam giác vuông cân.
b) Từ A hạ AH ^ BE, gọi M và N theo thứ tự là trung điểm của AH và HE. Chứng minh tứ giác BMNC là hình bình hành.
c) Chứng minh M là trực tâm của tam giác ANB.
d) Chứng minh
Câu hỏi trong đề: Ôn tập chương I và kiểm tra đánh giá !!
Quảng cáo
Trả lời:
a) E là điểm đối xứng của điểm A qua điểm D Þ A, D, E thẳng hàng và DA = DE Þ CD ^ AE tại trung điểm của AE Þ CA = CE Þ DCAE cân ở C.
Þ = 450 Þ DACE vuông cân.
b) Áp dụng tính chất đường trung bình cho DHAE và giả thiết ABCD là hình vuông ta sẽ chứng minh được tứ giác BMNC là hình bình hành.
c) Do AH ^ BN, mà NM//CB Þ NM ^ AB nên M là trực tâm của tam giác ANB.
d) M là trực tâm DABN nên BM ^ AN mà BM//CN Þ = 900
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) DDAE = DBAF (c.g.c)
và AE = AF
Mà
Þ DAEF vuông cân tại A.
b) DEAF vuông cân nên IA = IE = FI (1); DCFE vuông có IC là đường trung tuyến Þ IE = IC = IF (2);
Từ (1) và (2) suy ra Þ IA = IC nên I thuộc trung trực của AC hay I thuộc BD.
c) Do K đối xứng với A qua I nên I là trung điểm của AK.
Mà I là trung điểm của EF(gt) nên AFKE là hình bình hành, DAEF vuông cân tại A nên AI ^ EF.
Vậy AFKE là hình vuông.
Lời giải
a) Vì ABDE, ACFG là các hình vuông nên ta có E, A, C thẳng hàng và B, A, G cũng thẳng hàng (1) và EC = BG.
Mà = 450 (2).
Từ (1) và (2)
Suy ra EB//CG & EC = BG Þ EBCG là hình thang cân.
b) Chứng minh AEKG là hình chữ nhật, mà M là trung điểm EG nên K, A, M thẳng hàng.
c) Gọi H = MA Ç BC
Vì BEGC là hình thang cân nên DBEG = DEBC (c-g-c) Þ mà
Þ = 900 Þ MA ^BC tại H.
d) DABK = DBDC vì AB = DB, KA = EG = BC, mà KA ^ BC Þ CD ^ BK.
Chứng minh tương tự ta cũng có BF ^ KC.
Þ DKBC cosBF, CD, AM là 3 đường cao Þ đồng quy tại trực tâm I
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
15 câu Trắc nghiệm Toán 8 Chân trời sáng tạo Bài 1: Đơn thức và đa thức nhiều biến có đáp án
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 25
15 câu Trắc nghiệm Toán 8 Cánh diều Bài 1: Đơn thức nhiều biến. Đa thức nhiều biến có đáp án
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 1
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề cuối kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án- Đề 4