Câu hỏi:

13/07/2024 15,250

Cho hình bình hành ABCD có BC = 2AB và BAC^=600. Gọi E, F lần lượt là trung điểm của BC và AD.

          a) Chứng minh tứ giác ECDF là hình thoi.

          b) Tứ giác ABED là hình gì ?

          c) Tính số đo của góc AED^.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta sẽ có FD//EC và FD = EC = 0.5 AD Þ ECDF là hình bình hành.

AB12BC 

Þ AB = BE = EF = EC

Þ CDFE là hình thoi.

b) Tứ giác ABED là hình thang cân vì BE//AD và BAD^=ADE^=600 

c) Ta có EF=CD=AB=12CD=12AD, F là trung điểm AD Þ AED^=900

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) DDAE = DBAF (c.g.c)

DAE^=BAF^ và AE = AF

EAD^+EAB^=900 => EAB^+BAF^=900 

Þ DAEF vuông cân tại A.

b) DEAF vuông cân nên IA = IE = FI (1); DCFE vuông có IC là đường trung tuyến Þ IE = IC = IF (2);

Từ (1) và (2) suy ra Þ IA = IC nên I thuộc trung trực của AC hay I thuộc BD.

c) Do K đối xứng với A qua I nên I là trung điểm của AK.

Mà I là trung điểm của EF(gt) nên AFKE là hình bình hành, DAEF vuông cân tại A nên AI ^ EF.

Vậy AFKE là hình vuông.

Lời giải

a) E là điểm đối xứng của điểm A qua điểm D Þ A, D, E thẳng hàng và DA = DE Þ CD ^ AE tại trung điểm của AE Þ CA = CE Þ DCAE cân ở C.

Þ DAC^ = 450 Þ DACE vuông cân.

b) Áp dụng tính chất đường trung bình cho DHAE và giả thiết ABCD là hình vuông ta sẽ chứng minh được tứ giác BMNC là hình bình hành.

c) Do AH ^ BN,   mà NM//CB Þ NM ^ AB nên M là trực tâm của tam giác ANB.

d) M là trực tâm DABN nên BM ^ AN mà BM//CN Þ  ANC^= 900