Câu hỏi:

13/07/2024 5,851 Lưu

Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng vớ M qua AB, E là giao điểm của MH và AB. Gọi L là điểm đối xứng với M qua AC, F là giao điểm của MK và AC.

          a) Xác định dạng của tứ giác AEMF, AMBH, AMCK.

          b) Chứng minh H đối xứng với K qua A.

          c) Tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) AMBH là hình thoi (tứ giác có hai đường chéo vuông góc với nhau tại trung điểm mỗi đường)

Tương tự cũng có AMCK là hình thoi. AEMF là hình chữ nhật (tứ giác có ba góc vuông).

b) Áp dụng tính chất đối xứng trục ta có:

AH=AM,A1^=A2^ AK=AM,A3^=A4^.

A2^+A3^ = 900 Þ H, A, K thẳng hàng.

Lại có AH = AM = AK Þ H đối xứng với K qua A.

c) Nếu AEMF là hình vuông thì AM là đường phân giác của BAC^ mà AM là đường trung tuyến.

Þ DABC vuông cân tại A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) DDAE = DBAF (c.g.c)

DAE^=BAF^ và AE = AF

EAD^+EAB^=900 => EAB^+BAF^=900 

Þ DAEF vuông cân tại A.

b) DEAF vuông cân nên IA = IE = FI (1); DCFE vuông có IC là đường trung tuyến Þ IE = IC = IF (2);

Từ (1) và (2) suy ra Þ IA = IC nên I thuộc trung trực của AC hay I thuộc BD.

c) Do K đối xứng với A qua I nên I là trung điểm của AK.

Mà I là trung điểm của EF(gt) nên AFKE là hình bình hành, DAEF vuông cân tại A nên AI ^ EF.

Vậy AFKE là hình vuông.

Lời giải

a) E là điểm đối xứng của điểm A qua điểm D Þ A, D, E thẳng hàng và DA = DE Þ CD ^ AE tại trung điểm của AE Þ CA = CE Þ DCAE cân ở C.

Þ DAC^ = 450 Þ DACE vuông cân.

b) Áp dụng tính chất đường trung bình cho DHAE và giả thiết ABCD là hình vuông ta sẽ chứng minh được tứ giác BMNC là hình bình hành.

c) Do AH ^ BN,   mà NM//CB Þ NM ^ AB nên M là trực tâm của tam giác ANB.

d) M là trực tâm DABN nên BM ^ AN mà BM//CN Þ  ANC^= 900