Câu hỏi:

12/07/2024 1,650

Cho tam giác đều MNP nội tiếp đường tròn tâm (O). Điểm D di chuyển trên MP. Gọi E là giao điểm của MP và ND, gọi F là giao điểm của MD và NP. Chứng minh: MFN^=MND^

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

HS tự chứng minh

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Từ điểm P nằm ngoài đường tròn (O), kẻ hai cát tuyến PAB và PCD (A nằm giữa P và B, C nằm giữa P và D), các đường thẳng AD và BC cắt nhau tại Q

a, Cho biết P^=600AQC^=800Tính góc BCD^

b, Chứng minh PA.PB = PC.PD

Xem đáp án » 12/07/2024 6,098

Câu 2:

Trên đường tròn (O)  lấy ba điểm A, B và CGọi M, N và P theo thứ tự là điểm chính giữa cua các cung AB, BC và AC. BP cắt AN tại I, NM cắt AB tại E. Gọi D là giao điểm của AN và BC. Chứng minh:

a, Tam giác BNI cân

b, AE.BN = EB.AN

c, EI song song BC

d, ANBN=ABBD

Xem đáp án » 25/11/2020 3,820

Câu 3:

Tam giác MNP nội tiếp đường tròn tâm (O), các điểm I, K, H là điểm chính giữa của các cung MN, NP, PM. Gọi J là giao điểm của IK và MN, G là giao điểm của HK và MP. Chứng minh JG song song với NP

Xem đáp án » 12/07/2024 2,557

Câu 4:

Từ điểm M nằm bên ngoài đường tròn (O), vẽ tiếp tuyến MA và cát tuyến MCB với A,B,C Î (O). Phân giác góc BAC^ cắt BC tại D, cắt (O) tại N. Chứng minh:

a, MA = MD

b, Cho cát tuyến MCB quay quanh M và luôn cắt đưòng tròn. Chứng minh MB.MC không đổi

c, NB2=NA.ND

Xem đáp án » 12/07/2024 2,278

Câu 5:

Từ một điểm A bên ngoài (O), vẽ tiếp tuyến AB và cát tuyến ACD. Tia phân giác của góc BAC^ cắt BC và BD lần lượt tại M và N. Vẽ dây BF vuông góc với MN, cắt MN tại H, cắt CD tại E. Chứng minh:

a, Tam giác BMN cân

b, FD2=FE.FB

Xem đáp án » 12/07/2024 867

Bình luận


Bình luận