Kết nối tri thức
Cánh diều
Chân trời sáng tạo
Môn học
Chương trình khác
3409 lượt thi 6 câu hỏi
1577 lượt thi
Thi ngay
1535 lượt thi
1894 lượt thi
1761 lượt thi
1710 lượt thi
1544 lượt thi
1741 lượt thi
5652 lượt thi
1625 lượt thi
1374 lượt thi
Câu 1:
Từ điểm P nằm ngoài đường tròn (O), kẻ hai cát tuyến PAB và PCD (A nằm giữa P và B, C nằm giữa P và D), các đường thẳng AD và BC cắt nhau tại Q
a, Cho biết P^=600 và AQC^=800. Tính góc BCD^
b, Chứng minh PA.PB = PC.PD
Từ một điểm A bên ngoài (O), vẽ tiếp tuyến AB và cát tuyến ACD. Tia phân giác của góc BAC^ cắt BC và BD lần lượt tại M và N. Vẽ dây BF vuông góc với MN, cắt MN tại H, cắt CD tại E. Chứng minh:
a, Tam giác BMN cân
b, FD2=FE.FB
Câu 2:
Cho tam giác đều MNP nội tiếp đường tròn tâm (O). Điểm D di chuyển trên MP⏜. Gọi E là giao điểm của MP và ND, gọi F là giao điểm của MD và NP. Chứng minh: MFN^=MND^
Câu 3:
Trên đường tròn (O) lấy ba điểm A, B và C. Gọi M, N và P theo thứ tự là điểm chính giữa cua các cung AB, BC và AC. BP cắt AN tại I, NM cắt AB tại E. Gọi D là giao điểm của AN và BC. Chứng minh:
a, Tam giác BNI cân
b, AE.BN = EB.AN
c, EI song song BC
d, ANBN=ABBD
Câu 4:
Từ điểm M nằm bên ngoài đường tròn (O), vẽ tiếp tuyến MA và cát tuyến MCB với A,B,C Î (O). Phân giác góc BAC^ cắt BC tại D, cắt (O) tại N. Chứng minh:
a, MA = MD
b, Cho cát tuyến MCB quay quanh M và luôn cắt đưòng tròn. Chứng minh MB.MC không đổi
c, NB2=NA.ND
Câu 5:
Tam giác MNP nội tiếp đường tròn tâm (O), các điểm I, K, H là điểm chính giữa của các cung MN, NP, PM. Gọi J là giao điểm của IK và MN, G là giao điểm của HK và MP. Chứng minh JG song song với NP
682 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com