Câu hỏi:
12/07/2024 16,974Cho đường tròn (O) đường kính AB. Gọi H là điểm nằm giữa O và B. Kẻ dây CD vuông góc với AB tại H. Trên cung nhỏ AC lấy điểm E, kẻ CK ^ AE tại K. Đường thẳng DE cắt CK tại F. Chứng minh:
a, Tứ giác AHCK là tứ giác nội tiếp
b, AH.AB =
c, Tam giác ACE là tam giác cân
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a, Học sinh tự chứng minh
b, DADB vuông tại D, có đường cao DH Þ = AH.AB
c, ; (Tứ giác AKCH nội tiếp)
=> => DF//HK (H là trung điểm DC nên K là trung điểm FC) => Đpcm
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đường tròn (O) đường kính AB, gọi I là trung điểm của OA, dây CD vuông góc với AB tại I. Lấy K tùy ý trên cung BC nhỏ, AK cắt CD tại H
a, Chứng minh tứ giác BIHK là tứ giác nội tiếp
b, Chứng minh AHAK có giá trị không phụ thuộc vị trí điểm K
c, Kẻ DN ^ CB, DM ^ AC. Chứng minh các đường thẳng MN, AB, CD đồng quy
Câu 2:
Cho đường tròn (O; R) và điểm A cố định ngoài đường tròn. Qua A kẻ hai tiếp tuyến AM, AN tói đường tròn (M, N là hai tiếp điểm). Một đường thẳng d đi qua A cắt đường tròn (O; R) tại B và C (AB < AC). Gọi I là trung điểm BC
a, Chứng minh năm điểm A, M, N, O, I thuộc một đường tròn
b, Chứng minh
c, Đường thẳng qua B, song song với AM cắt MN tại E. Chúng minh IE song song MC
d, Chứng minh khi d thay đổi quanh quanh điểm A thì trọng tâm G của tam giác MBC luôn nằm trên một đường tròn cố định
Câu 3:
Cho nửa (O) đường kính AB. Lấy M Î OA (M không trùng O và A). Qua M vẽ đường thẳng d vuông góc với AB. Trên d lấy N sao cho ON > R. Nối NB cắt (O) tại C. Kẻ tiếp tuyến NE với (O) (E là tiếp điểm, E và A cùng thuộc nửa mặt phẳng bờ d). Chứng minh:
a, Bốn điểm O, E, M, N cùng thuộc một đường tròn
b,
c, (H là giao điểm của AC và d)
d, NF là tiếp tuyến (O) với F là giao điểm của HE và (O)
về câu hỏi!