Cho đường tròn (O; R) và điểm A cố định ngoài đường tròn. Qua A kẻ hai tiếp tuyến AM, AN tói đường tròn (M, N là hai tiếp điểm). Một đường thẳng d đi qua A cắt đường tròn (O; R) tại B và C (AB < AC). Gọi I là trung điểm BC
a, Chứng minh năm điểm A, M, N, O, I thuộc một đường tròn
b, Chứng minh
c, Đường thẳng qua B, song song với AM cắt MN tại E. Chúng minh IE song song MC
d, Chứng minh khi d thay đổi quanh quanh điểm A thì trọng tâm G của tam giác MBC luôn nằm trên một đường tròn cố định
Câu hỏi trong đề: Chương 3 - Bài 7: Tứ giác nội tiếp !!
Quảng cáo
Trả lời:
a, Chú ý:
b,
=> DAMB ~ DACM (g.g)
=> Đpcm
c, AMIN nội tiếp =>
BE//AM =>
=> => Tứ giác BEIN nội tiếp =>
Chứng minh được: => IE//CM
d, G là trọng tâm DMBC Þ G Î MI
Gọi K là trung điểm AO Þ MK = IK = AO
Từ G kẻ GG'//IK (G' Î MK)
=> không đổi (1)
MG' = MK => G' cố định (2). Từ (1) và (2) có G thuộc (G';AO)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a,
=> Tứ giác BIHK nội tiếp
b, Chứng minh được: DAHI ~ DABK (g.g)
=> AH.AK = AI.AB = (không đổi)
c, Chứng minh được MCND là hình chữ nhật từ đó => Đpcm
Lời giải
a, Học sinh tự chứng minh
b,
=> DNEC ~ DNBE (g.g) => ĐPCM
c, DNCH ~ DNMB (g.g)
=> NC.NB = NH.NM =
DNEH ~ DNME (c.g.c)
=>
d, (Tứ giác NEMO nội tiếp)
=> => EH ^ NO
=> DOEF cân tại O có ON là phân giác =>
=> DNEO = DNFO vậy => ĐPCM
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Quang Minh
Cho đường tròn (O) và điểm A cố định nằm ngoài đường tròn (O).Kẻ hài tiếp tuyến AM và AN với đường tròn(M,N là tiếp điểm).Qua kẻ cát tuyến ABC không đi qua tâm O (AB<AC và N thuộc cung nhỏ BC).Gọi H,K thứ tự là giáo điểm của MN với AO và ọi I là trung điểm của dây BC
a) CM: tứ giác AMOI nội tiếp
b) CM:∆AHK vuông góc ∆AIO và =
Xem tất cả 1 phản hồi
Quang Minh
Giúp mik với