Câu hỏi:

12/07/2024 13,572

Cho đường tròn tâm O và điểm A nằm ngoài đường tròn. Từ A kẻ hai tiếp tuyến AB và AC (B, C là các tiếp điểm).

a) Chứng minh tứ giác ABOC là tứ giác nội tiếp.

b) Gọi H là trực tâm tam giác ABC. Chứng minh tứ giác BOCH là hình thoi.

c) Gọi I là giao điểm của đoạn OA với đường tròn (O). Chứng minh I là tâm đường tròn nội tiếp tam giác ABC.

d) Cho OB = 3cm, OA = 5cm. Tính diện tích tam giác ABC.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Vì AB, AC là các tiếp tuyến của (O) (tại B, C) nên ABO^=ACO^=90°

=> AOBC là tứ giác nội tiếp đường tròn đường kính AO.

Tương tự OC // BH  (2)

Từ (1) và (2) ta có BOCH là hình bình hành. Mà OB = OC nên BOCH là hình thoi.

Vì AB, AC là các tiếp tuyến của (O) nên AO là tia phân giác BAC^. Vì I là giao điểm của đoạn AO với (O) nên I là điểm chính giữa của cung (nhỏ) BC^

do vậy I là tâm đường tròn nội tiếp tam giác ABC.

c) Gọi I là giao điểm của OA và BC => K là trung điểm của BC và BKAO

Áp dụng định lí Pitago cho tam giác AOB vuông tại B:

AB=AO2OB2=4cm

Áp dụng hệ thức lượng cho tam giác AOB vuông tại B:

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn (O; R) và điểm A nằm ngoài đường tròn (O). Vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B, C là hai tiếp điểm). Vẽ cát tuyến ADE của đường tròn (O) (D, E thuộc đường tròn (O); D nằm giữa A và E, tia AD nằm giữa hai tia AB, AO).

a) Chứng minh rằng A, B, O, C cùng thuộc một đường tròn và xác định tâm của đường tròn này.

b) Chứng minh rằng AB2=AD.AE

c) Gọi H là giao điểm của OA và BC. Chứng minh rằng ADH~AEO và tứ giác DEOH nội tiếp.

d) Đường thẳng AO cắt đường tròn (O) tại M, N (M nằm giữa A và O). Chứng minh rằng EHAN=MHAD

Xem đáp án » 12/07/2024 73,129

Câu 2:

Cho đường tròn (O) ngoại tiếp tam giác nhọn ABC. Gọi M và N lần lượt là điểm chính giữa của cung nhỏ AB và cung nhỏ BC. Hai dây AN và CM cắt nhau tại I. Dây MN cắt các cạnh AB và BC lần lượt tại các điểm H và K.

a) Chứng minh các điểm C, N, K, I cùng thuộc một đường tròn.

b) Chứng minh NB2=NK.MN

c) Chứng minh tứ giác BHIK là hình thoi.

d) Gọi PQ lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O). Chứng minh ba điểm D, E, K thẳng hàng.

Xem đáp án » 12/07/2024 34,817

Câu 3:

Cho tam giác ABC vuông tại A. Đường tròn tâm O đường kính AB cắt các đoạn BC và OC lần lượt tại D và I. Gọi H là hình chiếu vuông góc của A lên OC, AH cắt BC tại M.

a) Chứng minh tứ giác ACDH là nội tiếp và CHD^=ABC^

b) Chứng minh hai tam giác OHB và OBC đồng dạng với nhau và HM là tia phân giác của góc BHD^

c) Gọi K là trung điểm của BD chứng minh MD.BC = MB.CD và MB.MD = MK.MC.

d) Gọi E là giao điểm của AM và OK, J là giao điểm của IM và (O) (J khác I). Chứng minh hai đường thẳng OC và EJ cắt nhau tại một điểm trên (O).

Xem đáp án » 12/07/2024 25,725

Câu 4:

Cho tam giác nhọn ABC có AB < AC và đường cao AK. Vẽ đường tròn tâm O đường kính BC. Từ A kẻ các tiếp tuyến AM, AN với đường tròn (O) (M, N là các tiếp điểm; M và B nằm trên nửa mặt phẳng có bờ là đường thẳng AO). Gọi H là giao điểm của hai đường thẳng MN và AK. Chứng minh rằng:

a) Tứ giác AMKO nội tiếp đường tròn.

b) KA là tia phân giác của MKN^

c) AN2 = AK.AH

d) H là trực tâm của tam giác ABC.

Xem đáp án » 12/07/2024 24,693

Câu 5:

Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn (C) tâm o bán kính R. Hai đường cao AE và BK của tam giác ABC cắt nhau tại H (với E thuộc BC, K thuộc AC)

a) Chứng minh tứ giác ABEK nội tiếp được trong một đường tròn.

b) Chứng minh CE.CB = CK.CA

c) Chứng minh OCA^=BAE^

d) Cho B, C cố định và A di động trên ( C) nhưng vẫn thỏa mãn điều kiện tam giác ABC nhọn, khi đó H thuộc một đường tròn (T) cố định. Xác định tâm I và tính bán kính r của đường tròn (T), biết R = 3 cm.

Xem đáp án » 12/07/2024 23,469

Câu 6:

Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB với đường tròn (A, B là hai tiếp điểm). Lấy điểm C trên cung nhỏ AB (C không trùng với A, B). Từ điểm C kẻ CD vuông góc với AB, CE vuông góc với MA, CF vuông góc với MB (DAB, EMA, FMB). Gọi I là giao điểm của AC và DE, K là giao điểm của BC và DF. Chứng minh rằng

a) Tứ giác ADCE nội tiếp đường tròn.

b) Hai tam giác CDE và CFD đồng dạng

c) Tia đối của tia CD là tia phân giác của góc ECF^

d) Đường thẳng IK song song với đường thẳng AB.

Xem đáp án » 12/07/2024 22,529

Câu 7:

Cho đường tròn tâm O, đường kính AB cố định. H là điểm cố định thuộc đoạn OA (H không trùng O và A). Qua H vẽ đường thẳng vuông góc với AB cắt đường tròn tâm O tại C và D. Gọi K là điểm tùy ý thuộc cung lớn CD (K không trùng các điểm C, D và B). Gọi I là giao điểm của AK và CD.

a) Chứng minh tứ giác HIKB nội tiếp đường tròn.

b) Chứng minh AI.AK = AH.AB

c) Chứng minh khi điểm K thay đổi trên cung lớn CD của đường tròn tâm O thì tâm đường tròn ngoại tiếp tam giác KCI luôn thuộc một đường thẳng cố định.

Xem đáp án » 12/07/2024 16,096