Câu hỏi:

12/07/2024 15,478

Cho đường tròn tâm O và điểm A nằm ngoài đường tròn. Từ A kẻ hai tiếp tuyến AB và AC (B, C là các tiếp điểm).

a) Chứng minh tứ giác ABOC là tứ giác nội tiếp.

b) Gọi H là trực tâm tam giác ABC. Chứng minh tứ giác BOCH là hình thoi.

c) Gọi I là giao điểm của đoạn OA với đường tròn (O). Chứng minh I là tâm đường tròn nội tiếp tam giác ABC.

d) Cho OB = 3cm, OA = 5cm. Tính diện tích tam giác ABC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Vì AB, AC là các tiếp tuyến của (O) (tại B, C) nên ABO^=ACO^=90°

=> AOBC là tứ giác nội tiếp đường tròn đường kính AO.

Tương tự OC // BH  (2)

Từ (1) và (2) ta có BOCH là hình bình hành. Mà OB = OC nên BOCH là hình thoi.

Vì AB, AC là các tiếp tuyến của (O) nên AO là tia phân giác BAC^. Vì I là giao điểm của đoạn AO với (O) nên I là điểm chính giữa của cung (nhỏ) BC^

do vậy I là tâm đường tròn nội tiếp tam giác ABC.

c) Gọi I là giao điểm của OA và BC => K là trung điểm của BC và BKAO

Áp dụng định lí Pitago cho tam giác AOB vuông tại B:

AB=AO2OB2=4cm

Áp dụng hệ thức lượng cho tam giác AOB vuông tại B:

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có M là điểm chính giữa cung AB

AM=BMMNA^=MCB^KNI^=ICK^

Tứ giác CNKI có C và N là hai đỉnh kề nhau cùng nhìn cạnh KI dưới hai góc bằng nhau nên CNKI nội tiếp (dấu hiệu nhận biết tứ giác nội tiếp).

Do dó bốn điểm C, N, I, K cùng thuộc một đường tròn.

b) Ta có N là điểm chính giữa cung BC

nên BK // HI (2)

Từ (1) và (2) suy ra tứ giác BHIK là hình bình hành.

Mặt khác, AN, CM lần lượt là các tia phân giác của các góc A và C trong tam giác ABC nên I là giao điểm ba đường phân giác, do đó BI là tia phân giác góc B.

Vậy tứ giác BHIK là hình thoi

Do vậy D, Q, C thẳng hàng nên KQ // PK.

Chứng minh tương tự ta có D, P, B thẳng hàng và DQ // PK.

Do đó tứ giác PDQK là hình bình hành nên E là trung điểm của PQ cũng là trung điểm của DK. Vậy D, E, K thẳng hàng.