Câu hỏi:

13/07/2024 1,962

Chứng minh rằng qua ba điểm thẳng hàng không thể có một đường tròn.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta chứng minh bằng phản chứng

Giả sử tồn tại đường tròn (O) đi qua ba điểm thẳng hàng A, B, C

Ta có

A,B(O)OA=OBO thuộc trung trực Ex của AB

B,C(O)OB=OCO thuộc trung trực Fy của BC

Suy ra O=ExFy (*)

Mặt khác, vì A, B, C thẳng hàng nên:

ExFy, điều này mâu thuẫn với (*)

Vậy qua ba điểm thẳng hàng không thể có một đường tròn.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tứ giác ABCD có C^+D^=900. Gọi M, N, P, Q theo thứ tự là trung điểm của AB, BD, DC, CA. Chứng minh rằng bốn điểm M, N, P, Q cùng nằm trên một đường tròn.

Xem đáp án » 13/07/2024 24,310

Câu 2:

Cho tam giác ABC và điểm M là trung điểm của BC. Hạ MD, ME theo thứ tự vuông góc với AB và AC. Trên tia BD và CE lần lượt lấy các điểm I, K sao cho D là trung điểm của BI, E là trung điểm của CK. Chứng minh rằng bốn điểm B, I, K, C cùng nằm trên một đường tròn.

Xem đáp án » 13/07/2024 14,230

Câu 3:

Cho tứ diện ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M, N, P, Q theo thứ tự là trung điểm của AB, BC, CD, DA. Chứng minh rằng bốn điểm M, N, P, Q cùng nằm trên một đường tròn.

Xem đáp án » 13/07/2024 6,769

Câu 4:

Cho tam giác ABC đều. Gọi M, N, P theo thứ tự là trung điểm của các cạnh AB, BC, CA. Chứng minh rằng các điểm B, M, P, C thuộc một đường tròn

Xem đáp án » 13/07/2024 6,702

Câu 5:

Cho đoạn thẳng AB, tìm tập hợp các điểm M sao cho AMB^=900

Xem đáp án » 13/07/2024 5,722

Câu 6:

Cho tam giác ABC cân tại A, đường cao AH=1cm, BC=4cm. Đường vuông góc với AC tại C cắt đường thẳng AH ở D.

a) Chứng minh rằng các điểm B, C thuộc đường tròn đường kính AD

b) Tính độ dài AD

Xem đáp án » 13/07/2024 3,855

Câu 7:

Cho đường tròn (O;R) đường kính BC. Điểm A di động trên (O), gọi P, Q theo thứ tự là trung điểm của AB và AC

a) Chứng minh rằng PQ có độ dài không đổi khi A di động trên (O)

b) Tìm quỹ tích trung điểm M của PQ

Xem đáp án » 13/07/2024 3,521
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay