Câu hỏi:

19/09/2022 471

Hai bạn Công và Thành cùng viết ngẫu nhiên ra một số tự nhiên gồm 2 chữ số phân biệt. Xác suất để hai số được viết ra có ít nhất một chữ số chung bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án cần chọn là: C

Số các số tự nhiên có 2 chữ số phân biệt là 9.9=81⇒n(Ω)=812

Gọi A là biến cố: “ Hai số được viết ra có ít nhất một chữ số chung”

TH1: Hai bạn cùng viết hai số giống nhau ⇒ Có 81 cách.

TH2: Bạn Công viết số có dạng ab¯ và bạn Thành viết số có dạng ba¯

⇒a≠b≠0⇒ Có 9.8=72 cách.

TH3: Hai bạn chọn số chỉ có 1 chữ số trùng nhau.

+) Trùng số 0: Số cần viết có dạng a0¯ , Công có 9 cách viết, Thành có 8 cách viết (Khác số Công viết)

⇒ Có 9.8=72 cách.

+) Trùng số 1: Số cần viết có dạng a1¯ (a≠0, a≠1), hoặc (b≠1).

    Nếu Công viết số 10, khi đó Thành có 8 cách viết số có dạng (a≠0, a≠1)và 8 cách viết số có dạng  (b≠1)⇒ Có 16 cách.

    Nếu Công viết số có dạng 1b¯ (b≠0,b≠1)⇒ Công có 8 cách viết, khi đó Thành có 7 cách viết số có dạng  (a≠0,a≠1)và 8 cách viết số có dạng (b≠1).

⇒ Có 8(7+8)=120 cách.

    Nếu Công viết có dạng  a1¯(a≠0,a≠1)⇒ Công có 8 cách viết, khi đó Thành có 7 cách viết số có dạng (a≠0,a≠1)và 8 cách viết số có dạng 1b¯(b≠1).

⇒Có 8(7+8)=120cách.

⇒ Có 256 cách viết trùng số 1.

Tương tự cho các trường hợp trùng số 2,3,4,5,6,7,8,9.

⇒n(A)=81+72+72+256.9=2529

VậyP(A)=2529812=281729.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án cần chọn là: C

Số tự nhiên có 4 chữ số khác nhau là A74=840⇒n(S)=840.

Xét phép thử: “Chọn ngẫu nhiên một số thuộc S”. Ta có: n(Ω)= C8401=840.

Biến cố A:“số được chọn không có hai chữ số liên tiếp nào cùng chẵn”.

+ Trường hợp 1: Số được chọn có 4 chữ số đều là số lẻ, có 4!=24 cách chọn.

+ Trường hợp 2: Số được chọn có 1 chữ số chẵn và 3 chữ số lẻ

C31 cách chọn 1 chữ số chẵn và C43 cách chọn 3 chữ số lẻ. Đồng thời có 4! cách sắp xếp 4 số được chọn nên có C31.C43.4!=288 cách chọn thỏa mãn.

+ Trường hợp 3: Số được chọn có 2 chữ số chẵn và 2 chữ số lẻ.

* Chọn 2 số chẵn, 2 số lẻ trong tập hợp{1;2;3;4;5;6;7}có C32.C42 cách.

Với mỗi bộ 2 số chẵn và 2 số lẻ được chọn, để hai số chẵn không đứng cạnh nhau thì ta có các trường hợp CLCL, CLLC, LCLC. Với mỗi trường hợp trên ta có 2! cách sắp xếp 2 số lẻ và 2! cách sắp xếp các số chẵn nên có 3.2!.2! số thỏa mãn

* Suy ra trường hợp 3 có C32.C42.12=216 cách chọn.

Suy ra n(A)=24+288+216=528

Vậy xác suất cần tìm P(A)=n(A)n(Ω)=528840=2235.

Lời giải

Đáp án cần chọn là: B

- Tính xác suất để người đó gieo súc sắc thắng trong 1 ván (nghĩa là gieo được ít nhất 2 mặt 6 chấm).

Số phần tử của không gian mẫu n(Ω)=63=216

Gọi A là biến cố: “Gieo được ít nhất 2 mặt 6 chấm”

Số cách gieo được hai mặt 6 chấm là: C32.1.1.5=15 cách

Số cách gieo được ba mặt 6 chấm là: 1 cách

Số cách gieo được ít nhất 2 mặt 6 chấm là: n(A)=15+1=16 cách

Xác suất để người đó gieo thắng 1 ván là: P(A)=n(A)n(Ω)=16216=227

Do đó xác suất để thua 1 ván là 1−P(A)=1-227=2527

- Tính xác suất để người đó thắng ít nhất 2 ván.

TH1: Thắng 2 ván, thua 1 ván

Xác suất để người đó thắng 2 ván thua 1 ván là C32.227.227.2527=1006561

Xác suất để người đó thắng cả 3 ván là: 2273=819683

Theo quy tắc cộng xác suất ta có: Xác suất để người đó thắng ít nhất 2 ván là:

P=1006561+819683=30819683

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP