Một nhóm sinh viên có 4 nam 2 nữ ngồi và 9 ghế hàng ngang. Hỏi có bao nhiêu cách xếp sao cho nam ngồi liền nhau, nữ ngồi liền nhau và giữa 2 nhóm có ít nhất 2 ghế?
Quảng cáo
Trả lời:
Chọn đáp án B
Gọi nhóm I là nhóm ghế của 4 bạn nam, số cách xếp là 4!.
Tương tự với 2 bạn nữ là nhóm II với số cách xếp là 2!.
Rõ ràng khi xếp 6 bạn này và hàng 9 ghế thì ta còn 3 ghế trống.
Chia 9 hàng ghế này thành 5 phần có thứ tự, trong đó 2 phần bất kì nào dành cho nhóm I và nhóm II thì 3 phần còn lại sẽ là 3 chiếc ghế trống.
Số cách xếp 2 nhóm vào 9 hàng ghế sao cho nam ngồi liền nhau, nữ ngồi liền nhau là: .
Xem nhóm I, nhóm II và 1 ghế trống ở giữa 2 nhóm này là 1 nhóm đại diện, số nhóm đại diện là 2!.
Lúc này 9 ghế hàng ngang thì còn lại 2 ghế trống.
Tương tự chia 9 hàng ghế làm 3 phần với ý tưởng khi nhóm đại diện rơi vào 1 phần nào đó thì 2 phần còn lại sẽ là ghế trống, khi đó số cách xếp nam ngồi liền nhau, nữ ngồi liền nhau và giữa 2 nhóm có đúng 1 ghế trống là:
Vậy số cách xếp cần tìm là: .
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án cần chọn là: D
Gọi số tự nhiên thỏa mãn bài toán có dạng .
Xét trường hợp có cả chữ số 0 đứng đầu.
Số cách chọn vị trí cho chữ số 2 là
Số cách chọn vị trí cho chữ số 3 là
Số cách chọn 2 chữ số còn lại trong tập hợp {0;1;4;5;6;7;8;9} để xếp vào hai vị trí cuối là
Do đó có số.
Xét trường hợp chữ số 0 đứng đầu.
a=0 nên có 1 cách chọn.
Số cách chọn vị trí cho chữ số 2 là
Số cách chọn vị trí cho chữ số 3 là
Số cách chọn chữ số cuối trong tập hợp {1;4;5;6;7;8;9} là 7 cách.
Do đó có số.
Vậy có 11760−420=11340 số.
Lời giải
Chọn C.
Gọi số cần tìm của tập S có dạng . Trong đó .
Khi đó
- Số cách chọn chữ số a có 5 cách chọn vì .
- Số cách chọn chữ số b có 5 cách chọn vì .
- Số cách chọn chữ số c có 4 cách chọn vì và .
Do đó tập S có 5.5.4 = 100 phần tử.
Không gian mẫu là chọn ngẫu nhiên số từ tập .
Suy ra số phần tử của không gian mẫu là .
Gọi X là biến cố Số được chọn có chữ số cuối gấp đôi chữ số đầu .
Khi đó ta có các bộ số là hoặc thỏa mãn biến cố X và cứ mỗi bộ thì b có 4 cách chọn nên có tất cả 8 số thỏa yêu cầu.
Suy ra số phần tử của biến cố X là .
Vậy xác suất cần tính .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.