Câu hỏi:

10/03/2021 385 Lưu

Một nhóm sinh viên có 4 nam 2 nữ ngồi và 9 ghế hàng ngang. Hỏi có bao nhiêu cách xếp sao cho nam ngồi liền nhau, nữ ngồi liền nhau và giữa 2 nhóm có ít nhất 2 ghế?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn đáp án B

Gọi nhóm I là nhóm ghế của 4 bạn nam, số cách xếp là 4!.

Tương tự với 2 bạn nữ là nhóm II với số cách xếp là 2!.

 Rõ ràng khi xếp 6 bạn này và hàng 9 ghế thì ta còn 3 ghế trống.

Chia 9 hàng ghế này thành 5 phần có thứ tự, trong đó 2 phần bất kì nào dành cho nhóm I và nhóm II thì 3 phần còn lại sẽ là 3 chiếc ghế trống.

Số cách xếp 2 nhóm vào 9 hàng ghế sao cho nam ngồi liền nhau, nữ ngồi liền nhau là: A52.

Xem nhóm I, nhóm II và 1 ghế trống ở giữa 2 nhóm này là 1 nhóm đại diện, số nhóm đại diện là 2!.

Lúc này 9 ghế hàng ngang thì còn lại 2 ghế trống.

Tương tự chia 9 hàng ghế làm 3 phần với ý tưởng khi nhóm đại diện rơi vào 1 phần nào đó thì 2 phần còn lại sẽ là ghế trống, khi đó số cách xếp nam ngồi liền nhau, nữ ngồi liền nhau và giữa 2 nhóm có đúng 1 ghế trống là: 2!.A31

Vậy số cách xếp cần tìm là: 4!.2!.(A52-2!.A31)=672.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án cần chọn là: D

Gọi số tự nhiên thỏa mãn bài toán có dạng abcdefg .

Xét trường hợp có cả chữ số 0 đứng đầu.

Số cách chọn vị trí cho chữ số 2 là C72

Số cách chọn vị trí cho chữ số 3 là C53

Số cách chọn 2 chữ số còn lại trong tập hợp {0;1;4;5;6;7;8;9} để xếp vào hai vị trí cuối là A82

Do đó có C72.C53.A82=11760 số.

Xét trường hợp chữ số 0 đứng đầu.

a=0 nên có 1 cách chọn.

Số cách chọn vị trí cho chữ số 2 là C62

Số cách chọn vị trí cho chữ số 3 là C43

Số cách chọn chữ số cuối trong tập hợp {1;4;5;6;7;8;9} là 7 cách.

Do đó có 1.C62.C43.7=420 số.

Vậy có 11760−420=11340 số.

Lời giải

Chọn C.

Gọi số cần tìm của tập S có dạng abc. Trong đó a,b,c Aa0ab; bc; ca.

Khi đó

  • Số cách chọn chữ số a có 5 cách chọn vì a0.
  • Số cách chọn chữ số b có  5 cách chọn vì ba.
  • Số cách chọn chữ số c có 4 cách chọn vì  cacb.

Do đó tập S có 5.5.4 = 100 phần tử.

Không gian mẫu là chọn ngẫu nhiên  số từ tập S.

Suy ra số phần tử của không gian mẫu là Ω=C1001=100.

Gọi X là biến cố Số được chọn có chữ số cuối gấp đôi chữ số đầu .

Khi đó ta có các bộ số là 1b2 hoặc 2b4 thỏa mãn biến cố X và cứ mỗi bộ thì b có  4 cách chọn nên có tất cả 8 số thỏa yêu cầu.

Suy ra số phần tử của biến cố X là ΩX=8.

Vậy xác suất cần tính P(X)=ΩXΩ=8100=225.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP