Câu hỏi:

11/07/2024 758

Cho x là số thực khác 0 và x+1x là số nguyên. Chứng minh rằng: xn+1xn cũng là số nguyên với nN*

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

So sánh an+bn2a+b2n, với a≥0;b≥0,n∈N* ta được:

Xem đáp án » 20/03/2021 5,789

Câu 2:

Chứng minh rằng: 13+29+327+....+n3n=342n+34.3n (1)

Xem đáp án » 11/07/2024 4,397

Câu 3:

Chứng minh rằng với mọi số nguyên dương n2 thì 1n+1+1n+2+....+1n+n>​  1324 (*)

Xem đáp án » 11/07/2024 2,723

Câu 4:

Chứng minh rằng với mọi số nguyên dương n thì 4.32n+2+32n36 chia hết cho 32

Xem đáp án » 11/07/2024 2,432

Câu 5:

Chứng minh với mọi số nguyên dương n thì: nn(n+1)n1

Xem đáp án » 11/07/2024 1,689

Câu 6:

Chứng minh n55+n42+n33n30 luôn là số nguyên dương với mọi số nguyên dương n.

Xem đáp án » 11/07/2024 1,426

Câu 7:

Chứng minh rằng với mọi số nguyên dương n thì 32n+1+2n+2 chia hết cho 7

Xem đáp án » 11/07/2024 807

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store