Câu hỏi:

28/03/2021 1,686

Có bao nhiêu số nguyên m để phương trình z2+2mz+3m+4=0 có hai nghiệm không phải là số thực?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án cần chọn là: B

Để phương trình z2+2mz+3m+4=0 có hai nghiệm không phải là số thực thì '<0

m2-3m-4<0-1<m<4

Mà mZm0;1;2;3

Vậy có 4 giá trị của m thỏa mãn yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án cần chọn là: D

Để phương trình có 2 nghiệm phức phân biệt thì '<0m2-6m+5<01<m<5

Phương trình bậc hai có 2 nghiệm phức phân biệt thì hai số phức đó là hai số phức liên hợp nên luôn thỏa mãn điều kiện z1=z2

m1;5. Mà mZm2;3;4.Vậy có 3 giá trị của m thỏa mãn yêu cầu bài toán.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP