Câu hỏi:
28/05/2021 981Cho tam giác ABC có AC = AB. Đường phân giác AH và đường trung trực của cạnh AB cắt nhau tại O. Trên cạnh AB, AC lấy lần lượt E và F sao cho AE = CF
2: Khi E và F di động thỏa mãn thì đường trung trực của EF đi qua điểm cố định nào?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A
Theo câu trước ta có: OE = OF nên nằm trên đường trung trực của đoạn thẳng EF (tính chất đường trung trực của đoạn thẳng)
Do cố định nên O cũng cố định
Vậy đường trung trực của đoạn thẳng EF luôn đi qua điểm O cố định
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho có . Các đường trung trực của các cạnh AB và AC cắt nhau tại I. Tính số đo góc BIC
Câu 2:
Cho nhọn, đường cao AH. Lấy điểm D sao cho AB là trung trực của HD. Lấy điểm E sao cho AC là trung trực của HE. Gọi M là giao điểm của DE với AB, N là giao điểm của DE với AC. Chọn câu đúng
Câu 3:
Cho tam giác ABC trong đó . Các đường trung trực của AB và AC cắt cạnh BC theo thứ tự E và F. Tính
Câu 4:
Cho tam giác ABC trong đó . Các đường trung trực của AB và AC cắt cạnh BC theo thứ tự E và F. Tính
Câu 5:
Cho tam giác ABC vuông tại A, kẻ đường cao AH. Trên cạnh AC lấy điểm K sao cho AK = AH. Kẻ . Chọn câu đúng
Câu 6:
Cho tam giác ABC có là góc tù. Tia phân giác của góc B và góc C cắt nhau tại O. Lấy điểm E trên cạnh AB. Từ E kẻ . Từ P kẻ
2: So sánh BE + CF và BC
về câu hỏi!