Câu hỏi:

03/02/2021 9,464

Trong không gian Oxyz, cho bốn đường thẳng:

d1:x-31=y+1-2=z+11 , d2:x1=y-2=z-11,d3:x-12=y+11=z-11 , d4:x1=y-1-1=z-11

Số đường thẳng trong không gian cắt cả bốn đường thẳng trên là:

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn D

Đường thẳng d1 đi qua điểm M1 (3; -1; -1) và có một véctơ chỉ phương là 

Đường thẳng d2 đi qua điểm M2 (0; 0; 1) và có một véctơ chỉ phương là 

Do   M1 d1 nên hai đường thẳng d1 d2 song song với nhau.

 

Gọi (α) là mặt phẳng chứa d1 d2 khi đó (α) có một véctơ pháp tuyến là

Phương trình mặt phẳng (α)  x + y + z -1 = 0

Gọi A = d (α) thì A (1; -1; 1)

Gọi B = d4 (α) thì B (-1; 2; 0)

Do  không cùng phương với

Nên đường thẳng AB cắt hai đường thẳng d1 d2.

Vậy có 1 đường thẳng thỏa mãn yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;-4), B(1;-3;1), C(2;2;3). Tính đường kính d của mặt cầu (S) đi qua ba điểm trên và có tâm nằm trên mặt phẳng (Oxy).

Xem đáp án » 03/02/2021 43,700

Câu 2:

Cho hình chóp tứ giác đều S. ABCD có cạnh đáy bằng a. Gọi M, N lần lượt là trung điểm của SA BC. Biết góc giữa MN và mặt phẳng (ABC) bằng 60°. Khoảng cách giữa hai đường thẳng BC DM là:

Xem đáp án » 03/02/2021 33,017

Câu 3:

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x-y+z-10 = 0 và đường thẳng . Đường thẳng Δ cắt (P) và d lần lượt tại M và N sao cho A(1;3;2) là trung điểm MN. Tính độ dài đoạn MN.

Xem đáp án » 18/09/2019 14,612

Câu 4:

Trong không gian Oxyz, cho đường thẳng d: x-11=y-22=z-31 và mặt phẳng (α): x + y -z – 2 = 0. Trong các đường thẳng sau, đường thẳng nào nằm trong mặt phẳng (α), đồng thời vuông góc và cắt đường thẳng d?

Xem đáp án » 03/02/2021 12,017

Câu 5:

Trong không gian với hệ toạ độ Oxyz, cho hai điểm A (2; -3; 2), B (3; 5; 4). Tìm toạ độ điểm M trên trục Oz sao cho MA2 + MB2 đạt giá trị nhỏ nhất.

Xem đáp án » 03/02/2021 10,304

Câu 6:

Trong không gian với hệ tọa độ Oxyz, cho ΔABC biết A(2;0;0), B(0;2;0), C(1;1;3). Gọi H(x0;y0;z0) là chân đường cao hạ từ đỉnh A xuống BC. Khi đó x0 + y0 + z0 bằng:

Xem đáp án » 03/02/2021 10,224

Câu 7:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, BC =  a3,SA = a và SA vuông góc với đáy ABCD. Tính sinα, với α là góc tạo bởi giữa đường thẳng BD và mặt phẳng (SBC)

Xem đáp án » 03/02/2021 9,876

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store