Câu hỏi:
03/02/2021 9,464Trong không gian Oxyz, cho bốn đường thẳng:
Số đường thẳng trong không gian cắt cả bốn đường thẳng trên là:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Chọn D
Đường thẳng d1 đi qua điểm M1 (3; -1; -1) và có một véctơ chỉ phương là
Đường thẳng d2 đi qua điểm M2 (0; 0; 1) và có một véctơ chỉ phương là
Do và M1 ∉ d1 nên hai đường thẳng d1 và d2 song song với nhau.
Gọi (α) là mặt phẳng chứa d1 và d2 khi đó (α) có một véctơ pháp tuyến là
Phương trình mặt phẳng (α) là x + y + z -1 = 0
Gọi A = d3 ∩ (α) thì A (1; -1; 1)
Gọi B = d4 ∩ (α) thì B (-1; 2; 0)
Do không cùng phương với
Nên đường thẳng AB cắt hai đường thẳng d1 và d2.
Vậy có 1 đường thẳng thỏa mãn yêu cầu bài toán.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;-4), B(1;-3;1), C(2;2;3). Tính đường kính d của mặt cầu (S) đi qua ba điểm trên và có tâm nằm trên mặt phẳng (Oxy).
Câu 2:
Cho hình chóp tứ giác đều S. ABCD có cạnh đáy bằng a. Gọi M, N lần lượt là trung điểm của SA và BC. Biết góc giữa MN và mặt phẳng (ABC) bằng 60°. Khoảng cách giữa hai đường thẳng BC và DM là:
Câu 3:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x-y+z-10 = 0 và đường thẳng . Đường thẳng Δ cắt (P) và d lần lượt tại M và N sao cho A(1;3;2) là trung điểm MN. Tính độ dài đoạn MN.
Câu 4:
Trong không gian Oxyz, cho đường thẳng và mặt phẳng (α): x + y -z – 2 = 0. Trong các đường thẳng sau, đường thẳng nào nằm trong mặt phẳng (α), đồng thời vuông góc và cắt đường thẳng d?
Câu 5:
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A (2; -3; 2), B (3; 5; 4). Tìm toạ độ điểm M trên trục Oz sao cho MA2 + MB2 đạt giá trị nhỏ nhất.
Câu 6:
Trong không gian với hệ tọa độ Oxyz, cho ΔABC biết A(2;0;0), B(0;2;0), C(1;1;3). Gọi H(x0;y0;z0) là chân đường cao hạ từ đỉnh A xuống BC. Khi đó x0 + y0 + z0 bằng:
Câu 7:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, BC = a,SA = a và SA vuông góc với đáy ABCD. Tính sinα, với α là góc tạo bởi giữa đường thẳng BD và mặt phẳng (SBC)
về câu hỏi!