Câu hỏi:

03/02/2021 40,072 Lưu

Cho hình chóp tứ giác đều S. ABCD có cạnh đáy bằng a. Gọi M, N lần lượt là trung điểm của SA BC. Biết góc giữa MN và mặt phẳng (ABC) bằng 60°. Khoảng cách giữa hai đường thẳng BC DM là:

A. a1562

B. a3031

C. a1568

D. a1517

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi O là giao của AC và BD. Khi đó SOABCD

Gọi I là trung điểm OA. Vì IM// SO ⇒ IM(ABCD) nên hình chiếu của MN lên (ABCD) là IN. Suy ra 

Áp dụng định lí cô sin trong ΔCIN, ta có: 

Ta có d(BC, DM) = d(BC, (SAD)) = d(N, (SAD)) = 2d(O, (SAD)) = 2d(O, (SBC)).

Kẻ OE  SN ⇒ OE ⊥ (SBC).

Ta có d(O, (SBC)) = OE

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

Gọi tâm mặt cầu là: I(x;y;0)

IA=IBIA=IC(x-1)2+(y-2)2+42=(x-1)2+(y+3)2+12(x-1)2+(y-2)2+42=(x-2)2+(y-2)2+32  (y-2)2+42=(y+3)2+12x2-2x+1+16=x2-4x+4+910y=102x=-4x=-2y=1d=2R=2(-3)2+(-1)2+42=226

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP