Câu hỏi:
18/09/2019 48,906Trong không gian với hệ trục toạ độ (Oxyz), cho mặt cầu (S): (x-1)²+ (y-2)²+ (z-3)²=9, điểm A (0; 0; 2). Phương trình mặt phẳng (P) đi qua A và cắt mặt cầu (S) theo thiết diện là hình tròn (C) có diện tích nhỏ nhất là:
Quảng cáo
Trả lời:
Chọn B
Mặt cầu (S): (x-1)²+ (y-2)²+ (z-3)²=9 có tâm I (1;2;3), bán kính R=3.
IA = √6 < R nên A nằm trong mặt cầu.
Gọi r là bán kính đường tròn thiết diện, ta có
Trong đó h là khoảng cách từ I đến (P).
Diện tích thiết diện là
Vậy diện tích hình tròn (C) đạt nhỏ nhất khi h = IA. Khi đó là véc tơ pháp tuyến của (P).
Phương trình mặt phẳng (P) là 1 (x-0)+2 (y-0)+ (z-2)=0 ó x + 2y + z – 2 = 0
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn C
Phương trình tham số của . Gọi M = d ∩ (P).
Khi đó M ∈ d nên M (1+t;-t;2+t) ; M ∈ (P) nên 2(1 + t) – (- t) – 2 (2 + t) + 1 = 0 ó t = 1.
Vậy đường thẳng d cắt mặt phẳng (P) tại M (2;-1;3).
Gọi lần lượt là vectơ chỉ phương của d và vectơ pháp tuyến của mặt phẳng (P).
Khi đó một vectơ chỉ phương của đường thẳng cần tìm là .
Vậy phương trình đường thẳng cần tìm là
Lời giải
Chọn B
Ta có VTCP của đường thẳng d là:
VTPT của mặt phẳng (P) là:
Vì
Δ có vectơ chỉ phương và đi qua A (1;1;-2) nên có phương trình:
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.