Câu hỏi:
20/01/2021 2,895Cho dãy số (un) thỏa mãn ln2u6 – ln = ln u4 – 1 và un+1 = un.e với mọi n ≥ 1 Tìm u1
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Chọn D.
Vì un+1 = un.e nên dễ thấy dãy số (un) là cấp số nhân có công bội q = e
Từ giả thiết suy ra:
ln2u6 – (ln u8 +ln u4) + 1 = 0 ⇔ ln2u6 – (ln u8u4) + 1 = 0
( vì đây là cấp số nhân nên:
⇔ (ln u6 – 1)2 = 0
⇔ ln u6 = 1 ⇔ u6 = e ⇔ nên u1 = e-4
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm tất cả các giá trị của tham số m để phương trình sau có ba nghiệm phân biệt lập thành một cấp số nhân: x3 – 7mx2 + 2(m2 + 6m)x – 64 = 0.
Câu 2:
Cho 3 số tạo thành một cấp số cộng có tổng 21. Nếu thêm 2, 3, 9 lần lượt vào số thứ nhất, số thứ hai, số thứ ba tạo thành một cấp số nhân. Tìm 3 số đó.
Câu 3:
Một tam giác vuông có chu vi bằng 3a, và 3 cạnh lập thành một cấp số cộng. Tính độ dài cạnh lớn nhất của tam giác theo a.
Câu 4:
Cho cấp số nhân (un) có u1 = 3; 15u1 – 4u2 + u3 đạt giá trị nhỏ nhất. Tìm số hạng thứ 13 của cấp số nhân đã cho.
Câu 5:
Cho cấp số cộng (un) có công sai d = -3 và u22 + u32 + u42 đạt giá trị nhỏ nhất. Tính tổng S100 của số hạng đầu tiên của cấp số cộng đó.
Câu 7:
Giá trị của tổng 4+44+444+....+44..4 (tổng đó có 2018 số hạng)
về câu hỏi!