Câu hỏi:

12/07/2024 6,447

Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

a) x2 – 2x – 3 > 0 khi và chỉ khi x ∈ (– ∞; – 1) ∪ (3; + ∞).

b) x2 – 2x – 3 < 0 khi và chỉ khi x ∈ [– 1; 3].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét tam thức bậc hai f(x) = x2 – 2x – 3.

Ta có: a = 1, b = – 2, c = – 3, ∆ = b2 – 4ac = (– 2)2 – 4 . 1 . (– 3) = 16 > 0.

Khi đó tam thức bậc hai có hai nghiệm phân biệt x1 = – 1 và x2 = 3.

Lại có hệ số a = 1 > 0, do đó f(x) > 0 với mọi x ∈ (– ∞; – 1) ∪ (3; + ∞) và f(x) < 0 với mọi x ∈ (– 1; 3).

Vậy phát biểu a) đúng và phát biểu b) sai.

Chú ý: Tại x = – 1 và x = 3, f(x) = 0 nên phát biểu b) sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Gọi x là số lượng người khách từ người thứ 51 trở lên của nhóm nên x*.

Khi đó tổng số khách của nhóm là 50 + x (người).

Nếu có nhiều hơn 50 người đăng kí thì cứ thêm 1 người, giá vé sẽ giảm 5 000 đồng/người cho toàn bộ hành khách nên thêm x người thì giá vẽ sẽ giảm 5 000x đồng/người.

 Do đó, giá vé cho mỗi hành khách trong nhóm 50 + x người là: 300 000 – 5 000x (đồng).

Khi đó tổng số tiền vé của nhóm 50 + x người hay chính là doanh thu của công ty là

DT = (300 000 – 5 000x). (50 + x) = – 5 000x2 + 50 000x + 15 000 000.

 b) Vì chi phí thực sự cho chuyến đi là 15 080 000 đồng nên lợi nhuận của công ty là doanh thu trừ đi chi phí thực sự và là

y = DT – 15 080 000

= (– 5 000x2 + 50 000x + 15 000 000) – 15 080 000

= – 5 000x2 + 50 000x – 80 000  (đồng)

Xét tam thức bậc hai y = f(x) = – 5 000x2 + 50 000x – 80 000.

Nhận thấy f(x) có hai nghiệm là x1 = 2, x2 = 8 và hệ số a = – 5 000 < 0. Ta có bảng xét dấu sau:

x

                  2                 8               +

f(x)

                      0         +       0       

 

x*nên công ty không lỗ (hay lời hoặc hòa vốn) khi f(x) ≥ 0, tức là 2 ≤ x ≤ 8.

Do đó, số lượng khách từ người thứ 51 trở lên nhiều nhất là 8 người thì công ty du lịch không bị lỗ hay số người của nhóm khách du lịch nhiều nhất là 50 + 8 = 58 người.

Vậy số người của nhóm du lịch nhiều nhất là 58 người thì công ty không bị lỗ.

Lời giải

a) Tam thức bậc hai f(x) = 3x2 – 4x + 1 có ∆ = (– 4)2 – 4 . 3 . 1 = 4 > 0.

Do đó tam thức f(x) có hai nghiệm phân biệt x1 = 13 và x2 = 1.

Lại có hệ số a = 3 > 0.

Vậy f(x) > 0 với mọi x thuộc các khoảng ;13 và (1; + ); f(x) < 0 với mọi x thuộc khoảng 13;   1.

b) Tam thức bậc hai f(x) = 9x2 + 6x + 1 có ∆ = 62 – 4 . 9 . 1 = 0.

Do đó tam thức f(x) có nghiệm kép là x0 = 13.

Lại có hệ số a = 9 > 0.

Vậy f(x) > 0 với mọi x\13.

c) Tam thức bậc hai f(x) = 2x2 – 3x + 10 có ∆ = (– 3)2 – 4 . 2 . 10 = – 71 < 0 và hệ số a = 2 > 0 nên f(x) > 0 với mọi x.

d) Tam thức bậc hai f(x) = – 5x2 + 2x + 3 có ∆ = 22 – 4 . (– 5) . 3 = 64 > 0.

Do đó tam thức f(x) có hai nghiệm phân biệt x1 = 35 và x2 = 1.

Lại có hệ số a = – 5 < 0.

Vậy f(x) < 0 với mọi x thuộc các khoảng ;35 và (1; + ); f(x) > 0 với mọi x thuộc khoảng 35;  1.

e) Tam thức bậc hai f(x) = – 4x2 + 8x – 4 có ∆ = 82 – 4 . (– 4) . (– 4) = 0.

Do đó tam thức f(x) có nghiệm kép x0 = 1.

Lại có hệ số a = – 4 < 0.

Vậy f(x) < 0 với mọi x\1.

g) Tam thức bậc hai f(x) = – 3x2 + 3x – 1 có ∆ = 32 – 4 . (– 3) . (– 1) = – 3 < 0 và hệ số a = – 3 < 0 nên f(x) < 0 với mọi x.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay