Câu hỏi:
12/07/2024 141,273
Một công ty du lịch thông báo giá tiền cho chuyến đi tham quan của một nhóm khách du lịch như sau:
50 khách đầu tiên có giá là 300 000 đồng/người. Nếu có nhiều hơn 50 người đăng kí thì cứ thêm 1 người, giá vé sẽ giảm 5 000 đồng/người cho toàn bộ hành khách.
a) Gọi x là số lượng người khách từ người thứ 51 trở lên của nhóm. Biểu thị doanh thu theo x.
b) Số người của nhóm khách du lịch nhiều nhất là bao nhiêu thì công ty không bị lỗ? Biết rằng chi phí thực sự cho chuyến đi là 15 080 000 đồng.
Một công ty du lịch thông báo giá tiền cho chuyến đi tham quan của một nhóm khách du lịch như sau:
50 khách đầu tiên có giá là 300 000 đồng/người. Nếu có nhiều hơn 50 người đăng kí thì cứ thêm 1 người, giá vé sẽ giảm 5 000 đồng/người cho toàn bộ hành khách.
a) Gọi x là số lượng người khách từ người thứ 51 trở lên của nhóm. Biểu thị doanh thu theo x.
b) Số người của nhóm khách du lịch nhiều nhất là bao nhiêu thì công ty không bị lỗ? Biết rằng chi phí thực sự cho chuyến đi là 15 080 000 đồng.
Câu hỏi trong đề: Bài tập Dấu của tam thức bậc hai có đáp án !!
Quảng cáo
Trả lời:
a) Gọi x là số lượng người khách từ người thứ 51 trở lên của nhóm nên .
Khi đó tổng số khách của nhóm là 50 + x (người).
Nếu có nhiều hơn 50 người đăng kí thì cứ thêm 1 người, giá vé sẽ giảm 5 000 đồng/người cho toàn bộ hành khách nên thêm x người thì giá vẽ sẽ giảm 5 000x đồng/người.
Do đó, giá vé cho mỗi hành khách trong nhóm 50 + x người là: 300 000 – 5 000x (đồng).
Khi đó tổng số tiền vé của nhóm 50 + x người hay chính là doanh thu của công ty là
DT = (300 000 – 5 000x). (50 + x) = – 5 000x2 + 50 000x + 15 000 000.
b) Vì chi phí thực sự cho chuyến đi là 15 080 000 đồng nên lợi nhuận của công ty là doanh thu trừ đi chi phí thực sự và là
y = DT – 15 080 000
= (– 5 000x2 + 50 000x + 15 000 000) – 15 080 000
= – 5 000x2 + 50 000x – 80 000 (đồng)
Xét tam thức bậc hai y = f(x) = – 5 000x2 + 50 000x – 80 000.
Nhận thấy f(x) có hai nghiệm là x1 = 2, x2 = 8 và hệ số a = – 5 000 < 0. Ta có bảng xét dấu sau:
x |
– ∞ 2 8 + ∞ |
f(x) |
– 0 + 0 – |
Vì nên công ty không lỗ (hay lời hoặc hòa vốn) khi f(x) ≥ 0, tức là 2 ≤ x ≤ 8.
Do đó, số lượng khách từ người thứ 51 trở lên nhiều nhất là 8 người thì công ty du lịch không bị lỗ hay số người của nhóm khách du lịch nhiều nhất là 50 + 8 = 58 người.
Vậy số người của nhóm du lịch nhiều nhất là 58 người thì công ty không bị lỗ.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Tam thức bậc hai f(x) = 3x2 – 4x + 1 có ∆ = (– 4)2 – 4 . 3 . 1 = 4 > 0.
Do đó tam thức f(x) có hai nghiệm phân biệt x1 = và x2 = 1.
Lại có hệ số a = 3 > 0.
Vậy f(x) > 0 với mọi x thuộc các khoảng và (1; + ∞); f(x) < 0 với mọi x thuộc khoảng .
b) Tam thức bậc hai f(x) = 9x2 + 6x + 1 có ∆ = 62 – 4 . 9 . 1 = 0.
Do đó tam thức f(x) có nghiệm kép là x0 = .
Lại có hệ số a = 9 > 0.
Vậy f(x) > 0 với mọi .
c) Tam thức bậc hai f(x) = 2x2 – 3x + 10 có ∆ = (– 3)2 – 4 . 2 . 10 = – 71 < 0 và hệ số a = 2 > 0 nên f(x) > 0 với mọi .
d) Tam thức bậc hai f(x) = – 5x2 + 2x + 3 có ∆ = 22 – 4 . (– 5) . 3 = 64 > 0.
Do đó tam thức f(x) có hai nghiệm phân biệt x1 = và x2 = 1.
Lại có hệ số a = – 5 < 0.
Vậy f(x) < 0 với mọi x thuộc các khoảng và (1; + ∞); f(x) > 0 với mọi x thuộc khoảng .
e) Tam thức bậc hai f(x) = – 4x2 + 8x – 4 có ∆ = 82 – 4 . (– 4) . (– 4) = 0.
Do đó tam thức f(x) có nghiệm kép x0 = 1.
Lại có hệ số a = – 4 < 0.
Vậy f(x) < 0 với mọi .
g) Tam thức bậc hai f(x) = – 3x2 + 3x – 1 có ∆ = 32 – 4 . (– 3) . (– 1) = – 3 < 0 và hệ số a = – 3 < 0 nên f(x) < 0 với mọi
Lời giải
a) Quan sát Hình 24a, ta thấy đồ thị cắt trục hoành tại một điểm có tọa độ (2; 0).
Do đó nghiệm của tam thức bậc hai f(x) là x = 2.
Phần parabol nằm hoàn toàn phía trên trục hoành trừ điểm có hoành độ x = 2, nên ta có bảng xét dấu tam thức f(x) là:
x |
– ∞ 2 + ∞ |
f(x) |
+ 0 + |
b) Quan sát Hình 24b, ta thấy đồ thị cắt trục hoành tại 2 điểm phân biệt có tọa độ là (– 4; 0) và (– 1; 0).
Do đó tam thức bậc hai f(x) có hai nghiệm phân biệt là x1 = – 4 và x2 = – 1.
Trên các khoảng (– ∞; – 4) và (– 1; + ∞), phần parabol nằm hoàn toàn phía dưới trục hoành nên f(x) < 0.
Trên khoảng (– 4; – 1), phần parabol nằm phía trên trục hoành nên f(x) > 0.
Ta có bảng xét dấu tam thức f(x) sau:
x |
– ∞ – 4 – 1 + ∞ |
f(x) |
– 0 + 0 – |
c) Quan sát Hình 24c, ta thấy đồ thị cắt trục hoành tại hai điêm phân biệt có tọa độ (– 1; 0) và (2; 0).
Do đó tam thức bậc hai f(x) có hai nghiệm phân biệt x1 = – 1 và x2 = 2.
Trên các khoảng (– ∞; – 1) và (2; + ∞), phần parabol nằm phía trên trục hoành nên f(x) > 0.
Trên khoảng (– 1; 2) phần parabol nằm phía dưới trục hoành nên f(x) < 0.
Ta có bảng xét dấu tam thức f(x) sau:
x |
– ∞ – 1 2 + ∞ |
f(x) |
+ 0 – 0 + |
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.