Câu hỏi:

12/07/2024 4,624

Bộ phận nghiên cứu thị trường của một xí nghiệp xác định tổng chi phí để sản xuất Q sản phẩm là Q2 + 180Q + 140 000 (nghìn đồng). Giả sử giá mỗi sản phẩm bán ra thị trường là 1 200 nghìn đồng.

a) Xác định lợi nhuận xí nghiệp thu được sau khi bán hết Q sản phẩm đó, biết rằng lợi nhuận là hiệu của doanh thu trừ đi tổng chi phí để sản xuất.

b) Xí nghiệp sản xuất bao nhiêu sản phẩm thì hòa vốn?

c) Xí nghiệp cần sản xuất số sản phẩm là bao nhiêu để không bị lỗ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Theo bài ra thì điều kiện của Q là Q*.

a) Tổng chi phí để sản xuất Q sản phẩm là T = Q2 + 180Q + 140 000 (nghìn đồng).

Giá mỗi sản phẩm bán ra thị trường là 1 200 nghìn đồng nên giá Q sản phẩm bán ra thị trường hay chính là doanh thu khi bán Q sản phẩm là: DT = 1 200Q (nghìn đồng).

Khi đó lợi nhuận của xí nghiệp khi bán hết Q sản phẩm là:

y = DT – T = 1 200Q – (Q2 + 180Q + 140 000) = – Q2 + 1 020Q – 140 000 (nghìn đồng).

Vậy lợi nhuận của xí nghiệp đó là y = – Q2 + 1 020Q – 140 000 (nghìn đồng).

b) Xét tam thức bậc hai y = – Q2 + 1 020Q – 140 000.

Nhận thấy tam thức này có hai nghiệm Q1=510101201, Q2=510+101201 và hệ số a = – 1 < 0. Ta có bảng xét dấu sau:

Q

                 Q1               Q2              +

y

                      0         +       0       

 

Do Q* 510101201163,45; 510+101201856,55.

Khi đó xí nghiệp hòa vốn khi lợi nhuận bằng 0 hay y = 0, tức là Q = 164 hoặc Q = 857.

Vậy xí nghiệp đó hòa vốn khi sản xuất 164 sản phẩm hoặc 857 sản phẩm.

c) Xí nghiệp không bị lỗ, tức là lời hoặc hòa vốn, nên theo bảng xét dấu ở câu b thì xí nghiệp không bị lỗ khi và chỉ khi y ≥ 0, tức là 164 ≤ Q ≤ 857.

Vậy xí nghiệp không bị lỗ khi sản xuất từ 164 sản phẩm đến 857 sản phẩm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Gọi x là số lượng người khách từ người thứ 51 trở lên của nhóm nên x*.

Khi đó tổng số khách của nhóm là 50 + x (người).

Nếu có nhiều hơn 50 người đăng kí thì cứ thêm 1 người, giá vé sẽ giảm 5 000 đồng/người cho toàn bộ hành khách nên thêm x người thì giá vẽ sẽ giảm 5 000x đồng/người.

 Do đó, giá vé cho mỗi hành khách trong nhóm 50 + x người là: 300 000 – 5 000x (đồng).

Khi đó tổng số tiền vé của nhóm 50 + x người hay chính là doanh thu của công ty là

DT = (300 000 – 5 000x). (50 + x) = – 5 000x2 + 50 000x + 15 000 000.

 b) Vì chi phí thực sự cho chuyến đi là 15 080 000 đồng nên lợi nhuận của công ty là doanh thu trừ đi chi phí thực sự và là

y = DT – 15 080 000

= (– 5 000x2 + 50 000x + 15 000 000) – 15 080 000

= – 5 000x2 + 50 000x – 80 000  (đồng)

Xét tam thức bậc hai y = f(x) = – 5 000x2 + 50 000x – 80 000.

Nhận thấy f(x) có hai nghiệm là x1 = 2, x2 = 8 và hệ số a = – 5 000 < 0. Ta có bảng xét dấu sau:

x

                  2                 8               +

f(x)

                      0         +       0       

 

x*nên công ty không lỗ (hay lời hoặc hòa vốn) khi f(x) ≥ 0, tức là 2 ≤ x ≤ 8.

Do đó, số lượng khách từ người thứ 51 trở lên nhiều nhất là 8 người thì công ty du lịch không bị lỗ hay số người của nhóm khách du lịch nhiều nhất là 50 + 8 = 58 người.

Vậy số người của nhóm du lịch nhiều nhất là 58 người thì công ty không bị lỗ.

Lời giải

a) Tam thức bậc hai f(x) = 3x2 – 4x + 1 có ∆ = (– 4)2 – 4 . 3 . 1 = 4 > 0.

Do đó tam thức f(x) có hai nghiệm phân biệt x1 = 13 và x2 = 1.

Lại có hệ số a = 3 > 0.

Vậy f(x) > 0 với mọi x thuộc các khoảng ;13 và (1; + ); f(x) < 0 với mọi x thuộc khoảng 13;   1.

b) Tam thức bậc hai f(x) = 9x2 + 6x + 1 có ∆ = 62 – 4 . 9 . 1 = 0.

Do đó tam thức f(x) có nghiệm kép là x0 = 13.

Lại có hệ số a = 9 > 0.

Vậy f(x) > 0 với mọi x\13.

c) Tam thức bậc hai f(x) = 2x2 – 3x + 10 có ∆ = (– 3)2 – 4 . 2 . 10 = – 71 < 0 và hệ số a = 2 > 0 nên f(x) > 0 với mọi x.

d) Tam thức bậc hai f(x) = – 5x2 + 2x + 3 có ∆ = 22 – 4 . (– 5) . 3 = 64 > 0.

Do đó tam thức f(x) có hai nghiệm phân biệt x1 = 35 và x2 = 1.

Lại có hệ số a = – 5 < 0.

Vậy f(x) < 0 với mọi x thuộc các khoảng ;35 và (1; + ); f(x) > 0 với mọi x thuộc khoảng 35;  1.

e) Tam thức bậc hai f(x) = – 4x2 + 8x – 4 có ∆ = 82 – 4 . (– 4) . (– 4) = 0.

Do đó tam thức f(x) có nghiệm kép x0 = 1.

Lại có hệ số a = – 4 < 0.

Vậy f(x) < 0 với mọi x\1.

g) Tam thức bậc hai f(x) = – 3x2 + 3x – 1 có ∆ = 32 – 4 . (– 3) . (– 1) = – 3 < 0 và hệ số a = – 3 < 0 nên f(x) < 0 với mọi x.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP