Câu hỏi:
12/07/2024 3,619
Cho tam giác ABC vuông tại A có (Hình 2).

a) Nhắc lại định nghĩa sin α, cos α, tan α, cot α.
b) Biểu diễn tỉ số lượng giác của góc 90° – α theo tỉ số lượng giác của góc α.
Cho tam giác ABC vuông tại A có (Hình 2).
a) Nhắc lại định nghĩa sin α, cos α, tan α, cot α.
b) Biểu diễn tỉ số lượng giác của góc 90° – α theo tỉ số lượng giác của góc α.
Quảng cáo
Trả lời:
a) Tam giác ABC vuông tại A có . Khi đó ta có:
.
b) Áp dụng công thức tỉ số lượng giác của 2 góc phụ nhau, ta có:
sin(90° – α) = cos α;
cos(90° – α) = sin α;
tan(90° – α) = cot α;
cot(90° – α) = tan α.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tàu thứ nhất chạy với tốc độ 8 hải lí một giờ nên sau 2,5 giờ thì tàu thứ nhất chạy được 8 . 2,5 = 20 (hải lí).
Tàu thứ hai chạy với tốc độ 12 hải lí một giờ nên sau 2,5 giờ thì tàu thứ hai chạy được 12 . 2,5 = 30 (hải lí).
Hai tàu cùng chạy từ bến A và đi thẳng về 2 vùng biển khác nhau theo hướng tạo với nhau góc 75°, giả sử tàu thứ nhất chạy về vùng biển B và tàu thứ hai chạy về vùng biển C, ta có hình vẽ mô phỏng như sau:
Khi đó khoảng cách giữa hai tàu sau 2,5 giờ chính là khoảng cách giữa B và C.
Áp dụng định lí côsin trong tam giác ABC ta có:
BC2 = AB2 + AC2 – 2AB. AC. cos A = 202 + 302 – 2 . 20 . 30 . cos 75° ≈ 989,4
Suy ra: BC ≈ 31,5 (hải lí).
Vậy sau 2,5 giờ thì khoảng cách giữa hai tàu là 31,5 hải lí.
Lời giải
Ta đặt tên các điểm như trên hình vẽ dưới:
Ta có: AI là khoảng cách từ đỉnh của tòa nhà tới mắt bạn A nên AI = 1,5 m.
BE là khoảng cách từ mặt đất tới mắt của bạn B nên BE = 1,5 m.
Lại có: h = IB + BE ⇒ IB = h – BE = 20 – 1,5 = 18,5 (m).
Và AB = AI + IB = 1,5 + 18,5 = 20 (m).
Ta có: ;
Tam giác ABC có (định lí tổng ba góc trong tam giác)
Suy ra
Áp dụng định lí sin trong tam giác ABC ta có:
Do đó: .
Tam giác CBH vuông tại H nên
⇒ CH = BC . sin β = 25,5 . sin 75° ≈ 24,6.
Lại có HK = BE = 1,5 m.
Do đó CK = CH + HK = 24,6 + 1,5 = 26,1 (m).
Vậy chiếc diều bay cao 26,1 m so với mặt đất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.