Câu hỏi:

11/07/2024 6,741

Cho hai tam giác ABC và DEF thỏa mãn AB = DE, ABC^=DEF^=70°,BAC^=EDF^=60°, AC = 6 cm. Tính độ dài cạnh DF.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hai tam giác ABC và DEF thỏa mãn AB = DE,  AC = 6 cm. Tính độ dài cạnh DF (ảnh 1)

Xét hai tam giác ABC và DEF có:

ABC^=DEF^ (theo giả thiết).

AB = DE (theo giả thiết).

BAC^=EDF^ (theo giả thiết).

Vậy ΔABC=ΔDEF (g – c – g).

Do đó AC = DF = 6 cm (2 cạnh tương ứng).

Vậy DF = 6 cm.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)

Cho tia Oz là tia phân giác của góc xOy. Lấy các điểm A, B, C lần lượt thuộc các tia Ox, Oy, Oz sao cho (ảnh 1)

Do Oz là tia phân giác của góc xOy nên AOC^=BOC^.

Xét tam giác OAC có AOC^+CAO^+ACO^=180°.

Do đó ACO^=180°AOC^CAO^ (1).

Xét tam giác OBC có BOC^+CBO^+BCO^=180°.

Do đó BCO^=180°BOC^CBO^ (2).

AOC^=BOC^ CAO^=CBO^ nên từ (1) và (2) ta có ACO^=BCO^.

Xét hai tam giác OAC và OBC có:

AOC^=BOC^ (chứng minh trên).

OC chung.

ACO^=BCO^ (chứng minh trên).

Vậy ΔOAC=ΔOBC (g – c – g).

b)

Cho tia Oz là tia phân giác của góc xOy. Lấy các điểm A, B, C lần lượt thuộc các tia Ox, Oy, Oz sao cho (ảnh 2)

Ta có ACM^ là góc ngoài tại đỉnh C của tam giác OAC nên ACM^=AOC^+CAO^.

BCM^ là góc ngoài tại đỉnh C của tam giác OBC nên BCM^=BOC^+CBO^.

AOC^=BOC^ CAO^=CBO^ nên ACM^=BCM^.

Do ΔOAC=ΔOBC nên AC = BC (2 cạnh tương ứng).

Xét hai tam giác MAC và MBC có:

AC = BC (chứng minh trên).

ACM^=BCM^ (chứng minh trên).

MC chung.

Vậy ΔMAC=ΔMBC (c – g – c).

Lời giải

a) Xét hai tam giác AEC và AED có:

CE = DE (theo giả thiết).

CEA^=DEA^ (theo giả thiết).

AE chung

Vậy ΔAEC=ΔAED (c – g – c).

b) Do ΔAEC=ΔAED nên AC = AD (2 cạnh tương ứng) và CAE^=DAE^ (2 góc tương ứng).

Do CAE^=DAE^ nên CAB^=DAB^.

Xét hai tam giác ABC và ABD có:

AC = AD (chứng minh trên).

CAB^=DAB^ (chứng minh trên).

AB chung.

Vậy ΔABC=ΔABD (c – g – c).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay