Câu hỏi:

14/05/2022 3,739

Quay trở lại tình huống mở đầu, ta thấy mỗi chiếc cột với bóng của nó tạo thành hai cạnh góc vuông của một tam giác vuông. Hai tam giác vuông này có hai cặp cạnh tương ứng bằng nhau và hai góc ở đỉnh chiếc cột của hai tam giác này cũng bằng nhau. Vậy lí do mà bạn Tròn đưa ra có đúng không?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Quay trở lại tình huống mở đầu, ta thấy mỗi chiếc cột với bóng của nó tạo thành hai cạnh góc vuông của một tam (ảnh 1)

Gọi hai tam giác vuông này lần lượt là ABC (vuông tại A) và A'B'C' (vuông tại A') trong đó AB và A'B' lần lượt là hai chiếc cột, góc B và góc B' là góc tạo bởi tia nắng mặt trời với hai cột.

Khi đó ta có AB=A'B',B^=B'^.

Xét hai tam giác ABC và A'B'C' có:

ABC^=A'B'C'^ (theo giả thiết).

AB=A'B' (theo giả thiết).

BAC^=B'A'C'^ (cùng bằng 90o).

Do đó ΔABC=ΔA'B'C' (g – c – g).

Khi đó AC=A'C' (2 cạnh tương ứng) hay bóng của hai chiếc cột bằng nhau.

Vậy bạn Tròn nói đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Do Oz là tia phân giác của góc xOy nên xOz^=yOz^.

Mà M thuộc tia Oz, A thuộc tia Ox, B thuộc tia Oy nên AOM^=BOM^.

Do MAOA,MBOB nên tam giác OAM vuông tại A, tam giác OBM vuông tại B.

Xét hai tam giác OAM vuông tại A và OBM vuông tại B có:

AOM^=BOM^ (chứng minh trên).

OM chung.

Do đó ΔOAM=ΔOBM (cạnh huyền – góc nhọn).

Vậy MA = MB (2 cạnh tương ứng).

Lời giải

Do A, B, C nằm trên đường tròn tâm O nên OA = OB = OC.

Xét hai tam giác ONA vuông tại N và ONC vuông tại N có:

OA = OC (chứng minh trên).

ON chung.

Do đó ΔONA=ΔONC (cạnh huyền – cạnh góc vuông).

Xét hai tam giác OMB vuông tại M và OMC vuông tại M có:

OB = OC (chứng minh trên).

OM chung.

Do đó ΔOMB=ΔOMC (cạnh huyền – cạnh góc vuông).

Xét hai tam giác OPA vuông tại P và OPB vuông tại P có:

OA = OB (chứng minh trên).

OP chung.

Do đó ΔOPA=ΔOPB (cạnh huyền – cạnh góc vuông).

Vậy ΔONA=ΔONC,ΔOMB=ΔOMC,ΔOPA=ΔOPB.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay