Câu hỏi:

14/05/2022 3,010

Cho Hình 4.56, biết AB = CD, BAC^=BDC^=90°. Chứng minh rằng ΔABE=ΔDCE.

Cho Hình 4.56, biết AB = CD (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét tam giác ABE có BAE^+ABE^+AEB^=180°.

Do đó ABE^=180°BAE^AEB^ (1).

Xét tam giác DCE có CDE^+DCE^+DEC^=180°.

Do đó DCE^=180°CDE^DEC^ (2).

BAE^=CDE^=90°,AEB^=DEC^ (2 góc đối đỉnh) nên từ (1) và (2) có ABE^=DCE^.

Xét hai tam giác ABE vuông tại A và DCE vuông tại E có:

ABE^=DCE^ (chứng minh trên).

AB = DC (theo giả thiết).

Vậy ΔABE=ΔDCE (góc nhọn – cạnh góc vuông).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Do Oz là tia phân giác của góc xOy nên xOz^=yOz^.

Mà M thuộc tia Oz, A thuộc tia Ox, B thuộc tia Oy nên AOM^=BOM^.

Do MAOA,MBOB nên tam giác OAM vuông tại A, tam giác OBM vuông tại B.

Xét hai tam giác OAM vuông tại A và OBM vuông tại B có:

AOM^=BOM^ (chứng minh trên).

OM chung.

Do đó ΔOAM=ΔOBM (cạnh huyền – góc nhọn).

Vậy MA = MB (2 cạnh tương ứng).

Lời giải

Do A, B, C nằm trên đường tròn tâm O nên OA = OB = OC.

Xét hai tam giác ONA vuông tại N và ONC vuông tại N có:

OA = OC (chứng minh trên).

ON chung.

Do đó ΔONA=ΔONC (cạnh huyền – cạnh góc vuông).

Xét hai tam giác OMB vuông tại M và OMC vuông tại M có:

OB = OC (chứng minh trên).

OM chung.

Do đó ΔOMB=ΔOMC (cạnh huyền – cạnh góc vuông).

Xét hai tam giác OPA vuông tại P và OPB vuông tại P có:

OA = OB (chứng minh trên).

OP chung.

Do đó ΔOPA=ΔOPB (cạnh huyền – cạnh góc vuông).

Vậy ΔONA=ΔONC,ΔOMB=ΔOMC,ΔOPA=ΔOPB.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP