Câu hỏi:

11/07/2024 3,615

Cho tam giác ABC và M là trung điểm của đoạn thẳng BC.

a) Giả sử AM vuông góc với BC. Chứng minh rằng tam giác ABC cân tại A.

b) Giả sử AM là tia phân giác của góc BAC. Chứng minh rằng tam giác ABC cân tại A.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a)

Cho tam giác ABC và M là trung điểm của đoạn thẳng BC.  a) Giả sử AM vuông góc với BC. Chứng minh rằng tam giác ABC (ảnh 1)

Do M là trung điểm của BC nên MB = MC.

Do AMBC nên tam giác AMB vuông tại M, tam giác AMC vuông tại M.

Xét hai tam giác AMB vuông tại M và AMC vuông tại M có:

AM chung.

MB = MC (chứng minh trên).

Do đó ΔAMB=ΔAMC (2 cạnh góc vuông).

Khi đó AB = AC (2 cạnh tương ứng).

Tam giác ABC có AB = AC nên tam giác ABC cân tại A.

Vậy tam giác ABC cân tại A.

b)

Cho tam giác ABC và M là trung điểm của đoạn thẳng BC.  a) Giả sử AM vuông góc với BC. Chứng minh rằng tam giác ABC (ảnh 2)

Do AM là tia phân giác của BAC^ nên BAM^=CAM^.

Trên tia đối của tia MA lấy điểm I sao cho MI = MA.

Xét hai tam giác AMC và IMB có:

AM = IM (theo giả thiết).

AMC^=IMB^ (hai góc đối đỉnh).

MC = MB (theo giả thiết).

Do đó ΔAMC=ΔIMB (c – g – c).

Khi đó CAM^=BIM^ (2 góc tương ứng) và AC = BI (2 cạnh tương ứng).

BAM^=CAM^ nên BAM^=BIM^ hay BAI^=BIA^.

Tam giác BIA có BAI^=BIA^ nên tam giác BIA cân tại B hay BI = BA.

Mà BI = AC nên AB = AC.

Tam giác ABC có AB = AC nên tam giác ABC cân tại A.

Vậy tam giác ABC cân tại A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC cân tại A và M là trung điểm của đoạn thẳng BC. Chứng minh AM vuông góc với BC và AM là tia phân giác của góc BAC.

Xem đáp án » 11/07/2024 29,692

Câu 2:

Cho tam giác ABC cân tại A có đường cao AD. Chứng minh rằng đường thẳng AD là đường trung trực của đoạn thẳng BC.

Xem đáp án » 11/07/2024 12,030

Câu 3:

Cho tam giác ABC cân tại A và các điểm E, F lần lượt nằm trên các cạnh AC, AB sao cho BE vuông góc với AC, CF vuông góc với AB (H.4.69). Chứng minh rằng BE = CF.

Cho tam giác ABC cân tại A và các điểm E, F lần lượt nằm trên các cạnh AC, AB sao cho BE vuông góc với AC, CF (ảnh 1)

Xem đáp án » 11/07/2024 11,760

Câu 4:

Tam giác vuông có hai cạnh bằng nhau được gọi là tam giác vuông cân.

Hãy giải thích các khẳng định sau:

a) Tam giác vuông cân thì cân tại đỉnh góc vuông;

b) Tam giác vuông cân có hai góc nhọn bằng 45o;

c) Tam giác vuông có một góc nhọn bằng 45o là tam giác vuông cân.

Xem đáp án » 11/07/2024 10,925

Câu 5:

Tính số đo các góc và các cạnh chưa biết của tam giác DEF trong Hình 4.62.

 Tính số đo các góc và các cạnh chưa biết của tam giác DEF trong Hình 4.62. (ảnh 1)

 

 

 

 

Xem đáp án » 11/07/2024 3,952

Câu 6:

Một tam giác có gì đặc biệt nếu thỏa mãn một trong các điều kiện sau:

a) Tam giác có ba góc bằng nhau.

b) Tam giác cân có một góc bằng 60o.

Xem đáp án » 11/07/2024 2,989

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store