Câu hỏi:

11/07/2024 6,724

Cho góc xOy. Trên tia Ox lấy hai điểm A, M; trên tia Oy lấy hai điểm B, N sao cho

OA = OB, OM = ON, OA > OM. Chứng minh rằng:

a) ΔOAN=ΔOBM;                                      b) ΔAMN=ΔBNM.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a)

 Cho góc xOy. Trên tia Ox lấy hai điểm A, M; trên tia Oy lấy hai điểm B, N sao cho  OA = OB, OM = ON, OA > OM. Chứng minh rằng (ảnh 1)

Xét hai tam giác OAN và OBM có:

OA = OB (theo giả thiết).

O^ chung.

ON = OM (theo giả thiết).

Vậy ΔOAN=ΔOBM (c – g – c).

b)

Cho góc xOy. Trên tia Ox lấy hai điểm A, M; trên tia Oy lấy hai điểm B, N sao cho  OA = OB, OM = ON, OA > OM. Chứng minh rằng (ảnh 2) 

Do ΔOAN=ΔOBM nên AN = BM (2 cạnh tương ứng).

Có BN = OB – ON, AM = OA – OM.

Mà OB = OA, ON = OM nên BN = AM.

Xét hai tam giác AMN và BNM có:

AM = BN (chứng minh trên).

MN chung.

AN = BM (chứng minh trên).

Vậy ΔAMN=ΔBNM (c – c – c).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho Hình 4.74, biết OA = OB, OC = OD. Chứng minh rằng:

a) AC = BD;                                                  b) ΔACD=ΔBDC.

Cho Hình 4.74, biết OA = OB, OC = OD. Chứng minh rằng (ảnh 1) 

 

Xem đáp án » 11/07/2024 2,182

Câu 2:

Cho Hình 4.73. Hãy tìm số đo x, y của các góc và độ dài a, b của các đoạn thẳng trên hình vẽ.

Cho Hình 4.73. Hãy tính các độ dài a, b và số đo x, y của các góc trên hình vẽ (ảnh 1)

 

 

 

Xem đáp án » 11/07/2024 1,621

Câu 3:

Cho tam giác MBC vuông tại M có B^=60°. Gọi A là điểm nằm trên tia đối của tia MB sao cho MA = MB. Chứng minh rằng tam giác ABC là tam giác đều.

Xem đáp án » 11/07/2024 775

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL