Câu hỏi:
11/07/2024 1,525Cho tam giác MBC vuông tại M có Gọi A là điểm nằm trên tia đối của tia MB sao cho MA = MB. Chứng minh rằng tam giác ABC là tam giác đều.
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Xét hai tam giác AMC vuông tại M và BMC vuông tại M có:
AM = BM (theo giả thiết).
MC chung.
Do đó (2 cạnh góc vuông).
Khi đó AC = BC (2 cạnh tương ứng).
Tam giác ABC có AC = BC nên tam giác ABC cân tại C.
Tam giác ABC cân tại C lại có nên tam giác ABC là tam giác đều.
Vậy tam giác ABC là tam giác đều.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho góc xOy. Trên tia Ox lấy hai điểm A, M; trên tia Oy lấy hai điểm B, N sao cho
OA = OB, OM = ON, OA > OM. Chứng minh rằng:
a) b)
Câu 2:
Cho Hình 4.73. Hãy tìm số đo x, y của các góc và độ dài a, b của các đoạn thẳng trên hình vẽ.
Câu 3:
Cho Hình 4.74, biết OA = OB, OC = OD. Chứng minh rằng:
a) AC = BD; b)
15 câu Trắc nghiệm Toán 7 KNTT Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề thi Học kì 1 Toán 7 Cánh diều có đáp án (Đề 1)
Đề thi giữa kì 1 Toán 7 KNTT có đáp án - Đề 1
Đề kiểm tra 15 phút Toán 7 Chương 3 Hình học có đáp án (phần Qhgcytttg - Trắc nghiệm 1)
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
Đề thi Toán lớp 7 Học kì 1 có đáp án (Đề 1)
5 câu Trắc nghiệm Toán 7 CTST Bài tập cuối chương 9 có đáp án (Nhận biết)
10 câu Trắc nghiệm Toán 7 CD Bài tập cuối chương 7 có đáp án (Nhận biết)
về câu hỏi!