Câu hỏi:

07/01/2020 1,833

Trong không gian với hệ tọa độ Oxyz, cho ba điểm M(3;0;0), N(0;-2;0) và P(0;0;2). Mặt phẳng (MNP) có phương trình là

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian với hệ tọa độ Oxyz, mặt phẳng chứa hai điểm A(1;0;1), B(-1;2;2) và song song với trục Ox có phương trình là

Xem đáp án » 08/01/2020 37,072

Câu 2:

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x-2y+2z-2=0 và điểm I(-1;2;-1). Viết phương trình mặt cầu (S) có tâm I và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 5

Xem đáp án » 08/01/2020 21,778

Câu 3:

Trong không gian với hệ tọa độ Oxyz, cho điểm M(3;-1;-2) và mặt phẳng (P): 3x-y+2z+4=0.  Phương trình nào dưới đây là phương trình mặt phẳng đi qua M và song song với (P)?

Xem đáp án » 08/01/2020 16,669

Câu 4:

Trong không gian với hệ tọa độ Oxyz cho hai điểm A(1;-1;1), B(3;3;-1). Lập phương trình mặt phẳng  là trung trực của đoạn thẳng AB

Xem đáp án » 07/01/2020 16,023

Câu 5:

Trong không gian Oxyz cho tam giác ABC có A(2;3;3) phương trình đường trung tuyến kẻ từ B là   x-3-1=y-32=z-2-1 phương trình đường phân giác trong của góc C là  x-22=y-4-1=z-2-1. Biết rằng u=(m;n;-1) là một véc tơ chỉ phương của đường thẳng AB. Tính giá trị của biểu thức T=m2+n2 

Xem đáp án » 07/01/2020 10,823

Câu 6:

Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình mặt cầu có tâm I(1;2;-1) và tiếp xúc với mặt phẳng  (P): x-2y-2z-8=0

Xem đáp án » 08/01/2020 9,790

Câu 7:

Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C(0;0;c) với a, b, c là các số thực dương thay đổi tùy ý sao cho a2+b2+c2=3. Khoảng cách từ O đến mặt  phẳng (ABC) lớn nhất bằng

Xem đáp án » 07/01/2020 9,376

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store