Câu hỏi:
10/01/2020 44,316Trong không gian Oxyz, cho tam giác ABC với A(1;2;5), B(3;4;1), C(2;3;-3). Gọi G là trọng tâm tam giác ABC và M là điểm thay đổi trên (Oxz). Độ dài GM ngắn nhất bằng
Quảng cáo
Trả lời:
Chọn B
Do G là trọng tâm tam giác ABC => G(2;3;1).
Gọi H là hình chiếu vuông góc của G trên mặt phẳng (Oxz), khi đó GH là khoảng cách từ G đến mặt phẳng (Oxz), ta có:
Với M là điểm thay đổi trên mặt phẳng (Oxz)
do đó GM ngắn nhất
Vậy độ dài GM ngắn nhất bằng 3
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn B
Cách 1:
Gọi M,N lần lượt là trung điểm AB, BC
Gọi là véc tơ pháp tuyến của mặt phẳng (ABC).
I là tâm đường tròn ngoại tiếp tam giác ABC
Cách 2:
Ta có
=> Tam giác ABC vuông tại B
Vì I là tâm đường tròn ngoại tiếp tam giác ABC nên I là trung điểm của AC.
Lời giải
Chọn A
Cách 1: Ta có
Do ABCD là hình thang cân nên
Lại có AC = BD
Với a = -10 => D(-10;5;10). Kiểm tra thấy: (Không thỏa mãn ABCD là hình thang cân).
Với a= 6 => D(6; -3; -6). Kiểm tra thấy: 3. ( thỏa mãn).
Do đó
Cách 2
Ta có
Do ABCD là hình thang cân nên ngược hướng hay
Lại có AB = CD
Do đó
Cách 3
+ Viết phương trình mặt phẳng trung trực của đoạn thẳng AB( cũng là mp trung trực của đoạn thẳng CD )
+ Gọi mplà mặt phẳng trung trực của đoạn thẳng AB, suy ra mp đi qua trung điểm I(1;2;0) của đoạn thẳng AB và có một vectơ pháp tuyến là
suy ra phương trình của mplà :
+ Vì C, D đối xứng nhau qua mp nên
Công thức trắc nghiệm
Xác định toạ độ điểm là điểm đối xứng của điểm qua mp
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.