Câu hỏi:

09/01/2020 1,850

Trong mặt phẳng, cho hai tia Ox và Oy vuông góc với nhau tại gốc OTrên tia Ox lấy 10 điểm A1, A2, ..., A10 và trên tia Oy lấy 10 điểm B1, B2, ...., B10 thỏa mãn OA1 = A1A2 = ...= A9A10 = OB1 = B1B2 = ....= B9B10 = 1(đvd). Chọn ra ngẫu nhiên một tam giác có đỉnh nằm trong 20 điểm A1, A2, ...., A10, B1, B2, ..., B10. Xác suất để tam giác chọn được có đường tròn ngoại tiếp tiếp xúc với một trong hai trục Ox hoặc Oy là 

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn B

· Bổ đề: Trong mặt phẳng cho hai tia Ox và Oy vuông góc với nhau tại gốc O. Trên tia Ox lấy 10 điểm A1, A2, ..., A10 và trên tia Oy lấy 10 điểm B1, B2, ...., B10  thỏa mãn OA1 = A1A2 = ...= A9A10 = OB1 = B1B2 = ....= B9B10 = 1(đvd).

Tìm số tam giác có 2 đỉnh nằm trong 10 điểm đỉnh nằm trong 10 điểm B1, B2, ...., B10 sao cho tam giác chọn được có đường tròn ngoại tiếp, tiếp xúc với một trong hai trục Ox hoặc Oy?

Giải: Gọi   là 3 đỉnh của tam giác thỏa yêu cầu bài toán với 

Ta có 

Do đường tròn luôn cắt Ox tại   phân biệt nên đường tròn chỉ có thể tiếp xúc với Oy tại Bp ta có phương tích 

Do nên dễ thấy 

hay nói cách khác bộ ba (m,n,p)

Vậy có 4 tam giác thỏa mãn yêu cầu bổ đề.

· Bài toán: Không gian mẫu 

Gọi A là biến cố chọn được tam giác có đường tròn ngoại tiếp tiếp xúc với một trong hai trục Ox hoặc Oy. Theo bổ đề ta chọn được 4 tam giác có 2 đỉnh thuộc tia Ox, 1 đỉnh thuộc tia Oy; tương tự có 4 tam giác có 1 đỉnh thuộc tia Oy,  đỉnh thuộc tia . Suy ra, n(A) = 8

Xác suất biến cố A là 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tập S = {1;2;3;...;19;20} gồm 20 số tự nhiên từ 1 đến 20. Lấy ngẫu nhiên ba số thuộc S. Xác suất để ba số lấy được lập thành một cấp số cộng là

Xem đáp án » 10/01/2020 99,301

Câu 2:

Có hai dãy ghế đối diện nhau, mỗi dãy có 3 ghế. Xếp ngẫu nhiên 6 học sinh, gồm 3 nam và 3 nữ, ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Xác suất để mỗi học sinh nam đều ngồi đối diện với một học sinh nữ bằng:

Xem đáp án » 10/01/2020 91,570

Câu 3:

Cho A là tập tất cả các số tự nhiên có 5 chữ số. Chọn ngẫu nhiên một số từ tập A, tính xác suất để chọn được một số chia hết cho 7 và chữ số hàng đơn vị là chữ số 1.

Xem đáp án » 10/01/2020 37,820

Câu 4:

Gọi A là tập các số tự nhiên có 3 chữ số đôi một khác nhau. Lấy ngẫu nhiên ra từ A hai số. Tính xác suất để lấy được hai số mà các chữ số có mặt ở hai số đó giống nhau.

Xem đáp án » 10/01/2020 21,350

Câu 5:

Cho đa giác 30 đỉnh nội tiếp đường tròn, gọi (S) là tập hợp các đường thẳng đi qua hai trong số 30 đỉnh đã cho. Chọn 2 đường thẳng bất kỳ thuộc tập (S). Tính xác suất để chọn được 2 đường thẳng mà giao điểm của chúng nằm bên trong đường tròn.

Xem đáp án » 10/01/2020 19,761

Câu 6:

Chọn ngẫu nhiên một số tự nhiên có 4 chữ số. Tính xác suất để số được chọn có dạng abcd¯ , trong đó 1abcd9

Xem đáp án » 09/01/2020 17,261

Câu 7:

Giải bóng chuyền quốc tế VTV Cup có 8 đội tham gia, trong đó có hai đội Việt Nam. Ban tổ chức bốc thăm ngẫu nhiên để chia thành hai bảng đấu, mỗi bảng 4 đội. Xác suất để hai đội của Việt Nam nằm ở hai bảng khác nhau bằng

Xem đáp án » 10/01/2020 16,980

Bình luận


Bình luận
Vietjack official store