Câu hỏi:

10/01/2020 17,862

Cho một đa giác đều 48 đỉnh. Lấy ngẫu nhiên 3 đỉnh của đa giác. Tính xác suất để tam giác tạo thành từ ba đỉnh đó là một tam giác nhọn.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn C

Số cách chọn ra 3 đỉnh tùy ý từ 48 đỉnh của đa giác là 

Gọi A là biến cố “tam giác tạo thành từ ba đỉnh đó là một tam giác nhọn”.

* Tính số tam giác tù

+ Chọn đỉnh thứ nhất có 48 cách chọn.

+ Để tạo thành tam giác tù thì ba đỉnh của tam giác phải thuộc cùng  nửa đường tròn ngoại tiếp tam giác. Trong  đỉnh còn lại sẽ có  đỉnh cùng với đỉnh đã chọn thuộc cùng một nửa đường tròn ngoại tiếp. Nên số tam giác tù tạo thành là  48C232(tam giác).

* Tính số tam giác vuông tạo thành

+ Có 24 đường chéo đi qua tâm đường tròn ngoại tiếp tam giác.

+ Mỗi đường chéo trên cùng với 46 đỉnh còn lại tạ thành 46 tam giác vuông. Nên số tam giác vuông tạo thành là  24.46 = 1104(tam giác).

Do đó: 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

Lấy 3 phần tử từ tập S có 

Suy ra số phần tử của không gian mẫu là 

Gọi A là biến cố thỏa mãn yêu cầu bài toán.

Đặt  có 10 phần tử.

 có 10 phần tử.

a, b, c là ba số theo thứ tự lập thành cấp số cộng => 2a = b + c

Có 2a là số chẵn, nên b và c cùng chẵn hoặc cùng lẻ.

Suy ra số cách chọn b, c là 

Mỗi cách chọn cặp b, c thì có duy nhất một cách chọn a sao cho 2a = b + c

Suy ra số phần tử của biến cố là 

Xác suất thỏa yêu cầu bài là 

Lời giải

Chọn A.

Số phần tử của không gian mẫu là n(W =) 6!.

Gọi  A là biến cố : "Các bạn học sinh nam ngồi đối diện các bạn nữ".

Chọn chỗ cho học sinh nam thứ nhất có 6 cách.

Chọn chỗ cho học sinh nam thứ 2 có 4 cách (không ngồi đối diện học sinh nam thứ nhất)

Chọn chỗ cho học sinh nam thứ 3 có 2 cách (không ngồi đối diện học sinh nam thứ nhất, thứ  hai).

Xếp chỗ cho 3 học sinh nữ : 3! cách.

Theo quy tắc nhân ta có  cách

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP