Câu hỏi:
13/07/2024 8,984
Giải các bất phương trình sau:
a) 7x2 – 19x – 6 ≥ 0;
b) – 6x2 + 11x > 10;
c) 3x2 – 4x + 7 > x2 + 2x + 1;
d) x2 – 10x + 25 ≤ 0.
Giải các bất phương trình sau:
a) 7x2 – 19x – 6 ≥ 0;
b) – 6x2 + 11x > 10;
c) 3x2 – 4x + 7 > x2 + 2x + 1;
d) x2 – 10x + 25 ≤ 0.
Câu hỏi trong đề: Bài tập Toán 10 Bài tập cuối chương 7 có đáp án !!
Quảng cáo
Trả lời:
a) Tam thức bậc hai f(x) = 7x2 – 19x – 6 có a = 7 > 0 và ∆ = 192 – 4.7.(-6) = 529 > 0. Do đó f(x) có hai nghiệm phân biệt x1 = 3 và x2 = \( - \frac{2}{7}\).
Suy ra f(x) dương khi x thuộc khoảng \(\left( { - \infty ; - \frac{2}{7}} \right)\) và (3; +∞), f(x) âm khi x thuộc khoảng \(\left( { - \frac{2}{7};3} \right)\) và f(x) = 0 khi x = 3 và x = \( - \frac{2}{7}\).
Vậy bất phương trình đã cho có tập nghiệm là S = \(\left( { - \infty ; - \frac{2}{7}} \right]\) ∪ [3; +∞).
b) Tam thức bậc hai g(x) = – 6x2 + 11x – 10 có a = - 6 < 0 và ∆ = 112 – 4.(-6).(-10) = -119 < 0. Do đó g(x) vô nghiệm.
Suy ra g(x) luôn âm với mọi x thuộc ℝ
Vậy bất phương trình đã cho có tập nghiệm là S = \(\emptyset \).
c) Ta có: 3x2 – 4x + 7 > x2 + 2x + 1
⇔ 2x2 – 6x + 6 > 0
Tam thức bậc hai h(x) = 2x2 – 6x + 6 có a = 2 > 0 và ∆’ = 32 – 2.6 = - 3 < 0. Do đó h(x) có vô nghiệm.
Suy ra h(x) dương với mọi x thuộc ℝ.
Vậy bất phương trình đã cho có tập nghiệm S = ℝ.
d) Ta có tam thức bậc hai k(x) = x2 – 10x + 25 có a = 1 > 0 và ∆’ = 52 – 25 = 0. Do đó k(x) có nghiệm kép x1 = x2 = 5.
Suy ra f(x) dương khi x ≠ 5 và f(x) = 0 khi x = 5.
Vậy bất phương trình đã cho có tập nghiệm là S = {5}.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Đặt hệ trục tọa độ như hình vẽ với Ot biểu diễn thời gian (giây) là trục trùng với mặt nước, trục h(t) biểu diễn độ cao (mét), độ cao h(t) = - 4,9t2 + 9,6t là hàm bậc hai được biểu diễn bởi đường cong parabol màu xanh trên hình vẽ.
Khoảng thời gian cá heo ở trên không tính từ khi cá heo rời khỏi mặt nước nên chính là phần đồ thị nằm trên trục Ot hay - 4,9t2 + 9,6t > 0.
Tam thức bậc hai h(t) = - 4,9t2 + 9,6t có a = -4,9 < 0 và ∆ = 9,62 – 4.(-4,9).0 = 92,16 > 0. Do đó h(t) có hai nghiệm phân biệt t1 = 0 và t2 = \(\frac{{96}}{{49}}\).
Suy ra h(t) dương khi t thuộc khoảng \(\left( {0;\frac{{96}}{{49}}} \right)\).
Do đó h(t) > 0 khi t ∈ \(\left( {0;\frac{{96}}{{49}}} \right)\).
Vậy khoảng thời gian cá heo ở trên không là giây.
Lời giải
Không mất tính tổng quát giả sử tam giác cần xét là tam giác vuông tại A có độ dài cạnh AC ngắn hơn cạnh huyền BC 8cm.
Đặt BC = x (cm)
Khi đó AC = x – 8 (cm)
Xét tam giác ABC vuông tại A, có:
BC2 = AB2 + AC2 (định lí Py – ta – go)
⇔ x2 = AB2 + (x – 8)2
⇔ AB2 = x2 – (x – 8)2
⇔ AB2 = x2 – (x2 – 16x + 64)
⇔ AB2 = 16x – 64
⇔ AB = \(\sqrt {16x - 64} \) (cm)
Chu vi tam giác ABC là: x + x – 8 + \(\sqrt {16x - 64} \) = 2x – 8 + \(\sqrt {16x - 64} \) (cm)
Mà chu vi tam giác bằng 30cm nên có phương trình 2x – 8 + \(\sqrt {16x - 64} \)= 30
⇒ \(\sqrt {16x - 64} \)= 38 – 2x
⇒ 16x – 64 = 1 444 – 152x + 4x2
⇒ 4x2 – 168x + 1 508 = 0
⇒ x2 – 42x + 377 = 0
⇒ x = 29 và x = 13
Thay lần lượt vào phương trình đã cho ta thấy chỉ có x = 13 thỏa mãn.
Vậy độ dài cạnh huyền bằng 13cm thì tam giác thỏa mãn điều kiện đầu bài.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.