Câu hỏi:
13/07/2024 4,841Giải các bất phương trình sau:
a) 7x2 – 19x – 6 ≥ 0;
b) – 6x2 + 11x > 10;
c) 3x2 – 4x + 7 > x2 + 2x + 1;
d) x2 – 10x + 25 ≤ 0.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Tam thức bậc hai f(x) = 7x2 – 19x – 6 có a = 7 > 0 và ∆ = 192 – 4.7.(-6) = 529 > 0. Do đó f(x) có hai nghiệm phân biệt x1 = 3 và x2 = \( - \frac{2}{7}\).
Suy ra f(x) dương khi x thuộc khoảng \(\left( { - \infty ; - \frac{2}{7}} \right)\) và (3; +∞), f(x) âm khi x thuộc khoảng \(\left( { - \frac{2}{7};3} \right)\) và f(x) = 0 khi x = 3 và x = \( - \frac{2}{7}\).
Vậy bất phương trình đã cho có tập nghiệm là S = \(\left( { - \infty ; - \frac{2}{7}} \right]\) ∪ [3; +∞).
b) Tam thức bậc hai g(x) = – 6x2 + 11x – 10 có a = - 6 < 0 và ∆ = 112 – 4.(-6).(-10) = -119 < 0. Do đó g(x) vô nghiệm.
Suy ra g(x) luôn âm với mọi x thuộc ℝ
Vậy bất phương trình đã cho có tập nghiệm là S = \(\emptyset \).
c) Ta có: 3x2 – 4x + 7 > x2 + 2x + 1
⇔ 2x2 – 6x + 6 > 0
Tam thức bậc hai h(x) = 2x2 – 6x + 6 có a = 2 > 0 và ∆’ = 32 – 2.6 = - 3 < 0. Do đó h(x) có vô nghiệm.
Suy ra h(x) dương với mọi x thuộc ℝ.
Vậy bất phương trình đã cho có tập nghiệm S = ℝ.
d) Ta có tam thức bậc hai k(x) = x2 – 10x + 25 có a = 1 > 0 và ∆’ = 52 – 25 = 0. Do đó k(x) có nghiệm kép x1 = x2 = 5.
Suy ra f(x) dương khi x ≠ 5 và f(x) = 0 khi x = 5.
Vậy bất phương trình đã cho có tập nghiệm là S = {5}.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một chú cá heo nhảy lên khỏi mặt nước. Độ cao h(mét) của cá heo với mặt nước sau t giây được cho bởi hàm số:
h(t) = - 4,9t2 + 9,6t
Tính khoảng thời gian cá heo ở trên không.
Câu 2:
Một tam giác vuông có một cạnh góc vuông ngắn hơn cạnh huyền 8cm. Tính độ dài cạnh huyền, biết chu vi tam giác 30 cm.
Câu 3:
Lợi nhuận một tháng p(x) của một quán ăn phụ thuộc vào giá trung bình x của các món ăn theo công thức p(x) = -30x2 + 2 100x – 15 000, với đơn vị tính bằng nghìn đồng. Nếu muốn lợi nhuận trung bình không dưới 15 triệu một tháng thì giá bán trung bình của các món ăn cần nằm trong khoảng nào?
Câu 4:
Một quả bóng được bắn thẳng lên độ cao 2m với vận tốc ban đầu là 30m/s. Khoảng cách của quả bóng sau t giây được cho bởi hàm số
h(t) = - 4,9t2 + 30t + 2,
với h(t) tính bằng đơn vị mét. Hỏi quả bóng nằm ở độ cao trên 40m trong bao nhiêu lâu? Làm tròn kết quả đến hàng phần mười.
Câu 5:
Giải các phương trình sau:
a) \(\sqrt {{x^2} - 7x} = \sqrt { - 9{x^2} - 8x + 3} \);
b) \(\sqrt {{x^2} + x + 8} - \sqrt {{x^2} + 4x + 1} = 0\);
c) \(\sqrt {4{x^2} + x - 1} = x + 1\);
d) \(\sqrt {2{x^2} - 10x - 29} = \sqrt {x - 8} \).
Câu 6:
Quỹ đạo của một quả bóng được mô tả bằng hàm số y = f(x) = -0,03x2 + 0,4x + 1,5 với y (tính bằng mét) là độ cao của quả bóng so với mặt đất khi độ dịch chuyển theo phương ngang của bóng là x (tính bằng mét). Để quả bóng có thể ném được qua lưới cao 2m, người ném phải đứng cách lưới bao xa? Làm tròn kết quả đến hàng phần mười.
75 câu trắc nghiệm Vectơ nâng cao (P1)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
28 câu Trắc nghiệm Mệnh đề có đáp án
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
80 câu trắc nghiệm Vectơ cơ bản (P1)
5 câu Trắc nghiệm Phương sai và độ lệch chuẩn có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
50 câu trắc nghiệm Thống kê nâng cao (P1)
về câu hỏi!