Câu hỏi:
04/07/2022 4,861
Mẫu số liệu về thời gian (đơn vị: giây) chạy cự li 500 m của 5 người là:
55,2 58,8 62,4 54 59,4 (5)
Mẫu số liệu về thời gian (đơn vị: giây) chạy cự li 1 500 m của 5 người đó là:
271,2 261 276 282 270 (6)
Tính phương sai của mẫu (5) và mẫu (6). Từ đó cho biết cự li chạy nào có kết quả đồng đều hơn.
Mẫu số liệu về thời gian (đơn vị: giây) chạy cự li 500 m của 5 người là:
55,2 58,8 62,4 54 59,4 (5)
Mẫu số liệu về thời gian (đơn vị: giây) chạy cự li 1 500 m của 5 người đó là:
271,2 261 276 282 270 (6)
Tính phương sai của mẫu (5) và mẫu (6). Từ đó cho biết cự li chạy nào có kết quả đồng đều hơn.
Quảng cáo
Trả lời:
Hướng dẫn giải:
Số trung bình cộng của mẫu số liệu (5) là:
\[\overline {{x_{\left( 5 \right)}}} = \frac{{55,2 + 58,8 + 62,4 + 54 + 59,4}}{5} = 57,96\].
Phương sai của mẫu số liệu (5) là:
\(s_{\left( 5 \right)}^2 = \frac{{{{\left( {55,2 - 57,96} \right)}^2} + {{\left( {58,8 - 57,96} \right)}^2} + {{\left( {62,4 - 57,96} \right)}^2} + {{\left( {54 - 57,96} \right)}^2} + {{\left( {59,4 - 57,96} \right)}^2}}}{5}\)
= 9,1584.
Số trung bình cộng của mẫu số liệu (6) là:
\(\overline {{x_{\left( 6 \right)}}} = \frac{{271,2\; + 261\; + 276\; + 282\; + 270}}{5} = 272,04\).
Phương sai của mẫu số liệu (6) là:
\(s_{\left( 6 \right)}^2 = \frac{1}{5}\)[(271,2 − 272,04)2 + (261 − 272,04)2 + (276 − 272,04)2 + (282 − 272,04)2 + (270 − 272,04)2] = 48,3264.
Vì 9,1584 < 48,3264 nên \(s_{\left( 5 \right)}^2 < s_{\left( 6 \right)}^2\).
Vậy cự li chạy 500 m có kết quả đồng đều hơn.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Số trung bình cộng của mẫu số liệu đã cho là:
\(\overline x = \frac{{112 + 102 + 106 + 94 + 101}}{5} = 103\).
Phương sai của mẫu số liệu trên là:
\({s^2} = \frac{{{{\left( {112 - 103} \right)}^2} + {{\left( {102 - 103} \right)}^2} + {{\left( {106 - 103} \right)}^2} + {{\left( {94 - 103} \right)}^2} + {{\left( {101 - 103} \right)}^2}}}{5} = 35,2\).
Độ lệch chuẩn của mẫu số liệu là:
s = \(\sqrt {{s^2}} = \sqrt {35,2} = \frac{{4\sqrt {55} }}{5} \approx 5,93\).
Lời giải
Hướng dẫn giải:
Số trung bình cộng của mẫu số liệu trên là:
\(\overline x = \frac{{430 + 560 + 450 + 550 + 760 + 430 + 525 + 410 + 635 + 450 + 800 + 900}}{{12}} = 575\).
Phương sai của mẫu số liệu trên là:
\({s^2} = \frac{1}{{12}}\)[(430 − 575)2 + (560 − 575)2 + (450 − 575)2 + (550 − 575)2 + (760 – 575)2 + (430 − 575)2 + (525 – 575)2 + (410 − 575)2 + (635 − 575)2 + (450 − 575)2 + (800 − 575)2 + (900 – 575)2] ≈ 24829,17.
Vậy độ lệch chuẩn của mẫu số liệu trên là: s = \(\sqrt {{s^2}} = \sqrt {24829,27} \approx 157,57\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.