Câu hỏi:
04/07/2022 4,403
Mẫu số liệu về số lượng áo bán ra lần lượt từ tháng 1 đến tháng 12 của một doanh nghiệp là:
430 560 450 550 760 430 525 410 635 450 800 900
Tính độ lệch chuẩn của mẫu số liệu đó.
Mẫu số liệu về số lượng áo bán ra lần lượt từ tháng 1 đến tháng 12 của một doanh nghiệp là:
430 560 450 550 760 430 525 410 635 450 800 900
Tính độ lệch chuẩn của mẫu số liệu đó.
Quảng cáo
Trả lời:
Hướng dẫn giải:
Số trung bình cộng của mẫu số liệu trên là:
\(\overline x = \frac{{430 + 560 + 450 + 550 + 760 + 430 + 525 + 410 + 635 + 450 + 800 + 900}}{{12}} = 575\).
Phương sai của mẫu số liệu trên là:
\({s^2} = \frac{1}{{12}}\)[(430 − 575)2 + (560 − 575)2 + (450 − 575)2 + (550 − 575)2 + (760 – 575)2 + (430 − 575)2 + (525 – 575)2 + (410 − 575)2 + (635 − 575)2 + (450 − 575)2 + (800 − 575)2 + (900 – 575)2] ≈ 24829,17.
Vậy độ lệch chuẩn của mẫu số liệu trên là: s = \(\sqrt {{s^2}} = \sqrt {24829,27} \approx 157,57\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Số trung bình cộng của mẫu số liệu đã cho là:
\(\overline x = \frac{{112 + 102 + 106 + 94 + 101}}{5} = 103\).
Phương sai của mẫu số liệu trên là:
\({s^2} = \frac{{{{\left( {112 - 103} \right)}^2} + {{\left( {102 - 103} \right)}^2} + {{\left( {106 - 103} \right)}^2} + {{\left( {94 - 103} \right)}^2} + {{\left( {101 - 103} \right)}^2}}}{5} = 35,2\).
Độ lệch chuẩn của mẫu số liệu là:
s = \(\sqrt {{s^2}} = \sqrt {35,2} = \frac{{4\sqrt {55} }}{5} \approx 5,93\).
Lời giải
Hướng dẫn giải:
Số trung bình cộng của mẫu số liệu (5) là:
\[\overline {{x_{\left( 5 \right)}}} = \frac{{55,2 + 58,8 + 62,4 + 54 + 59,4}}{5} = 57,96\].
Phương sai của mẫu số liệu (5) là:
\(s_{\left( 5 \right)}^2 = \frac{{{{\left( {55,2 - 57,96} \right)}^2} + {{\left( {58,8 - 57,96} \right)}^2} + {{\left( {62,4 - 57,96} \right)}^2} + {{\left( {54 - 57,96} \right)}^2} + {{\left( {59,4 - 57,96} \right)}^2}}}{5}\)
= 9,1584.
Số trung bình cộng của mẫu số liệu (6) là:
\(\overline {{x_{\left( 6 \right)}}} = \frac{{271,2\; + 261\; + 276\; + 282\; + 270}}{5} = 272,04\).
Phương sai của mẫu số liệu (6) là:
\(s_{\left( 6 \right)}^2 = \frac{1}{5}\)[(271,2 − 272,04)2 + (261 − 272,04)2 + (276 − 272,04)2 + (282 − 272,04)2 + (270 − 272,04)2] = 48,3264.
Vì 9,1584 < 48,3264 nên \(s_{\left( 5 \right)}^2 < s_{\left( 6 \right)}^2\).
Vậy cự li chạy 500 m có kết quả đồng đều hơn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.