Câu hỏi:

04/07/2022 3,094 Lưu

Hai bạn nữ Hoa, Thảo và hai bạn nam Dũng, Huy được xếp ngồi ngẫu nhiên vào bốn ghế đặt theo hàng dọc. Tính xác suất của mỗi biến cố:

“Bạn Thảo ngồi ghế đầu tiên”;

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Mỗi cách sắp xếp 4 bạn Hoa, Thảo, Dũng, Nam vào 4 ghế đặt theo hàng dọc là một hoán vị của 4 phần tử.

Do đó không gian mẫu Ω là các hoán vị của 4 phần tử, vậy n(Ω) = 4! = 24 (phần tử).

Gọi biến cố A: “Bạn Thảo ngồi ghế đầu tiên”.

Ta xếp bạn Thảo ngồi ghế đầu tiên, có 1 cách xếp.

Xếp 3 bạn còn lại vào 3 ghế còn lại, có 3! = 6 cách xếp.

Theo quy tắc nhân, số cách xếp 4 bạn sao cho bạn Thảo ngồi ghế đầu tiên là 1 . 6 = 6 cách xếp hay n(A) = 6.

Vậy xác suất của biến cố A là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{6}{{24}} = \frac{1}{4}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Tổng số bông hoa là: 5 + 5 + 6 = 16 (bông).

Mỗi lần chọn 4 bông hoa từ 16 bông hoa cho ta một tổ hợp chập 4 của 16 phần tử. Do đó, không gian mẫu Ω gồm các tổ hợp chập 4 của 16 phần tử và

\(n\left( \Omega \right) = C_{16}^4 = \frac{{16!}}{{12!\,\,.\,\,4!}} = \frac{{16.15.14.13}}{{4.3.2.1}} = 1820\).

Xét biến cố H: “Bốn bông hoa chọn ra có cả ba màu”.

Việc chọn 4 bông hoa có cả ba màu là thực hiện một trong ba khả năng sau:

- Chọn ra 1 bông hoa màu trắng, 1 bông hoa màu vàng và 2 bông hoa màu đỏ;

- Chọn ra 1 bông hoa màu trắng, 2 bông hoa màu vàng và 1 bông hoa màu đỏ;

- Chọn ra 2 bông hoa màu trắng, 1 bông hoa màu vàng và 1 bông hoa màu đỏ;

• Xét khả năng thứ nhất: Chọn ra 1 bông hoa màu trắng, 1 bông hoa màu vàng và 2 bông hoa màu đỏ.

Có 5 cách chọn 1 bông hoa màu trắng.

Có 5 cách chọn 1 bông hoa màu vàng.

\(C_6^2\) cách chọn 2 bông hoa màu đỏ.

Theo quy tắc nhân, số cách chọn ra 1 bông hoa màu trắng, 1 bông hoa màu vàng và 2 bông hoa màu đỏ là 5 . 5 . \(C_6^2\) = 375.

• Xét khả năng thứ hai: Chọn ra 1 bông hoa màu trắng, 2 bông hoa màu vàng và 1 bông hoa màu đỏ.

Có 5 cách chọn 1 bông hoa màu trắng.

\(C_5^2\) cách chọn 2 bông hoa màu vàng.

Có 6 cách chọn 1 bông hoa màu đỏ.

Theo quy tắc nhân, số cách chọn ra 1 bông hoa màu trắng, 2 bông hoa màu vàng và 1 bông hoa màu đỏ là 5 . \(C_5^2\) . 6 = 300.

• Xét khả năng thứ ba: Chọn ra 2 bông hoa màu trắng, 1 bông hoa màu vàng và 1 bông hoa màu đỏ.

\(C_5^2\) cách chọn 2 bông hoa màu trắng.

Có 5 cách chọn 1 bông hoa màu vàng.

Có 6 cách chọn 1 bông hoa màu đỏ.

Theo quy tắc nhân, số cách chọn ra 2 bông hoa màu trắng, 1 bông hoa màu vàng và 1 bông hoa màu đỏ là \(C_5^2\) . 5 . 6 = 300.

Theo quy tắc cộng, số cách chọn 4 bông hoa đủ cả ba màu là: 375 + 300 + 300 = 975.

Vì thế, n(H) = 975.  

Vậy xác suất của biến cố H: “Bốn bông hoa chọn ra có cả ba màu” là 

\(P\left( H \right) = \frac{{n\left( H \right)}}{{n\left( \Omega \right)}} = \frac{{975}}{{1820}} = \frac{{15}}{{28}}\).

Lời giải

Hướng dẫn giải:

Gọi biến cố A: “Tích các số trên hai thẻ là số lẻ”.

Tích của hai số là số lẻ khi hai số đó là số lẻ.

Trong 5 thẻ đã cho, các thẻ ghi số lẻ là các thẻ ghi số 1, 3, 5; có 3 thẻ ghi số lẻ.

Lấy hai thẻ ghi số lẻ trong 3 thẻ ghi số lẻ có \(C_3^2 = 3\) cách, vậy n(A) = 3.

Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{3}{{10}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP