Câu hỏi:
13/07/2024 6,597Câu hỏi trong đề: Bài tập Xác suất của biến cố có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải:
Gọi biến cố A: “Tích các số trên hai thẻ là số lẻ”.
Tích của hai số là số lẻ khi hai số đó là số lẻ.
Trong 5 thẻ đã cho, các thẻ ghi số lẻ là các thẻ ghi số 1, 3, 5; có 3 thẻ ghi số lẻ.
Lấy hai thẻ ghi số lẻ trong 3 thẻ ghi số lẻ có \(C_3^2 = 3\) cách, vậy n(A) = 3.
Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{3}{{10}}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Tổng số bông hoa là: 5 + 5 + 6 = 16 (bông).
Mỗi lần chọn 4 bông hoa từ 16 bông hoa cho ta một tổ hợp chập 4 của 16 phần tử. Do đó, không gian mẫu Ω gồm các tổ hợp chập 4 của 16 phần tử và
\(n\left( \Omega \right) = C_{16}^4 = \frac{{16!}}{{12!\,\,.\,\,4!}} = \frac{{16.15.14.13}}{{4.3.2.1}} = 1820\).
Xét biến cố H: “Bốn bông hoa chọn ra có cả ba màu”.
Việc chọn 4 bông hoa có cả ba màu là thực hiện một trong ba khả năng sau:
- Chọn ra 1 bông hoa màu trắng, 1 bông hoa màu vàng và 2 bông hoa màu đỏ;
- Chọn ra 1 bông hoa màu trắng, 2 bông hoa màu vàng và 1 bông hoa màu đỏ;
- Chọn ra 2 bông hoa màu trắng, 1 bông hoa màu vàng và 1 bông hoa màu đỏ;
• Xét khả năng thứ nhất: Chọn ra 1 bông hoa màu trắng, 1 bông hoa màu vàng và 2 bông hoa màu đỏ.
Có 5 cách chọn 1 bông hoa màu trắng.
Có 5 cách chọn 1 bông hoa màu vàng.
Có \(C_6^2\) cách chọn 2 bông hoa màu đỏ.
Theo quy tắc nhân, số cách chọn ra 1 bông hoa màu trắng, 1 bông hoa màu vàng và 2 bông hoa màu đỏ là 5 . 5 . \(C_6^2\) = 375.
• Xét khả năng thứ hai: Chọn ra 1 bông hoa màu trắng, 2 bông hoa màu vàng và 1 bông hoa màu đỏ.
Có 5 cách chọn 1 bông hoa màu trắng.
Có \(C_5^2\) cách chọn 2 bông hoa màu vàng.
Có 6 cách chọn 1 bông hoa màu đỏ.
Theo quy tắc nhân, số cách chọn ra 1 bông hoa màu trắng, 2 bông hoa màu vàng và 1 bông hoa màu đỏ là 5 . \(C_5^2\) . 6 = 300.
• Xét khả năng thứ ba: Chọn ra 2 bông hoa màu trắng, 1 bông hoa màu vàng và 1 bông hoa màu đỏ.
Có \(C_5^2\) cách chọn 2 bông hoa màu trắng.
Có 5 cách chọn 1 bông hoa màu vàng.
Có 6 cách chọn 1 bông hoa màu đỏ.
Theo quy tắc nhân, số cách chọn ra 2 bông hoa màu trắng, 1 bông hoa màu vàng và 1 bông hoa màu đỏ là \(C_5^2\) . 5 . 6 = 300.
Theo quy tắc cộng, số cách chọn 4 bông hoa đủ cả ba màu là: 375 + 300 + 300 = 975.
Vì thế, n(H) = 975.
Vậy xác suất của biến cố H: “Bốn bông hoa chọn ra có cả ba màu” là
\(P\left( H \right) = \frac{{n\left( H \right)}}{{n\left( \Omega \right)}} = \frac{{975}}{{1820}} = \frac{{15}}{{28}}\).
Lời giải
Hướng dẫn giải
Tổng số bông hoa là: 10 + 10 + 10 = 30 (bông).
Mỗi lần chọn 4 bông hoa từ 30 bông hoa cho ta một tổ hợp chập 4 của 30 phần tử. Do đó, không gian mẫu Ω gồm các tổ hợp chập 4 của 30 phần tử và \(n\left( \Omega \right) = C_{30}^4\).
Gọi biến cố H: “Bốn bông hoa chọn ra có cả ba màu”.
Việc chọn 4 bông hoa có cả ba màu là thực hiện một trong ba khả năng sau:
- Chọn ra 1 bông hoa màu trắng, 1 bông hoa màu vàng và 2 bông hoa màu đỏ;
- Chọn ra 1 bông hoa màu trắng, 2 bông hoa màu vàng và 1 bông hoa màu đỏ;
- Chọn ra 2 bông hoa màu trắng, 1 bông hoa màu vàng và 1 bông hoa màu đỏ;
• Xét khả năng thứ nhất: Chọn ra 1 bông hoa màu trắng, 1 bông hoa màu vàng và 2 bông hoa màu đỏ.
Có 10 cách chọn 1 bông hoa màu trắng.
Có 10 cách chọn 1 bông hoa màu vàng.
Có \(C_{10}^2\) cách chọn 2 bông hoa màu đỏ.
Theo quy tắc nhân, số cách chọn ra 1 bông hoa màu trắng, 1 bông hoa màu vàng và 2 bông hoa màu đỏ là 10 . 10 . \(C_{10}^2\) = 4 500.
• Xét khả năng thứ hai: Chọn ra 1 bông hoa màu trắng, 2 bông hoa màu vàng và 1 bông hoa màu đỏ.
Có 10 cách chọn 1 bông hoa màu trắng.
Có \(C_{10}^2\) cách chọn 2 bông hoa màu vàng.
Có 10 cách chọn 1 bông hoa màu đỏ.
Theo quy tắc nhân, số cách chọn ra 1 bông hoa màu trắng, 2 bông hoa màu vàng và 1 bông hoa màu đỏ là 10 . \(C_{10}^2\). 10 = 4 500.
• Xét khả năng thứ ba: Chọn ra 2 bông hoa màu trắng, 1 bông hoa màu vàng và 1 bông hoa màu đỏ.
Có \(C_{10}^2\) cách chọn 2 bông hoa màu trắng.
Có 10 cách chọn 1 bông hoa màu vàng.
Có 10 cách chọn 1 bông hoa màu đỏ.
Theo quy tắc nhân, số cách chọn ra 2 bông hoa màu trắng, 1 bông hoa màu vàng và 1 bông hoa màu đỏ là \(C_{10}^2\) . 10 . 10 = 4 500.
Theo quy tắc cộng, số cách chọn 4 bông hoa đủ cả ba màu là: 4 500 + 4 500 + 4 500 = 13 500.
Vì thế, n(H) = 13 500.
Vậy xác suất của biến cố H: “Bốn bông hoa chọn ra có cả ba màu” là
\(P\left( H \right) = \frac{{n\left( H \right)}}{{n\left( \Omega \right)}} = \frac{{13\,\,500}}{{C_{30}^4}} = \frac{{100}}{{203}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.