Câu hỏi:

13/07/2024 6,529

Tính xác suất của biến cố “Tích các số trên hai thẻ là số lẻ”. 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Gọi biến cố A: “Tích các số trên hai thẻ là số lẻ”.

Tích của hai số là số lẻ khi hai số đó là số lẻ.

Trong 5 thẻ đã cho, các thẻ ghi số lẻ là các thẻ ghi số 1, 3, 5; có 3 thẻ ghi số lẻ.

Lấy hai thẻ ghi số lẻ trong 3 thẻ ghi số lẻ có \(C_3^2 = 3\) cách, vậy n(A) = 3.

Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{3}{{10}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Tổng số bông hoa là: 5 + 5 + 6 = 16 (bông).

Mỗi lần chọn 4 bông hoa từ 16 bông hoa cho ta một tổ hợp chập 4 của 16 phần tử. Do đó, không gian mẫu Ω gồm các tổ hợp chập 4 của 16 phần tử và

\(n\left( \Omega \right) = C_{16}^4 = \frac{{16!}}{{12!\,\,.\,\,4!}} = \frac{{16.15.14.13}}{{4.3.2.1}} = 1820\).

Xét biến cố H: “Bốn bông hoa chọn ra có cả ba màu”.

Việc chọn 4 bông hoa có cả ba màu là thực hiện một trong ba khả năng sau:

- Chọn ra 1 bông hoa màu trắng, 1 bông hoa màu vàng và 2 bông hoa màu đỏ;

- Chọn ra 1 bông hoa màu trắng, 2 bông hoa màu vàng và 1 bông hoa màu đỏ;

- Chọn ra 2 bông hoa màu trắng, 1 bông hoa màu vàng và 1 bông hoa màu đỏ;

• Xét khả năng thứ nhất: Chọn ra 1 bông hoa màu trắng, 1 bông hoa màu vàng và 2 bông hoa màu đỏ.

Có 5 cách chọn 1 bông hoa màu trắng.

Có 5 cách chọn 1 bông hoa màu vàng.

\(C_6^2\) cách chọn 2 bông hoa màu đỏ.

Theo quy tắc nhân, số cách chọn ra 1 bông hoa màu trắng, 1 bông hoa màu vàng và 2 bông hoa màu đỏ là 5 . 5 . \(C_6^2\) = 375.

• Xét khả năng thứ hai: Chọn ra 1 bông hoa màu trắng, 2 bông hoa màu vàng và 1 bông hoa màu đỏ.

Có 5 cách chọn 1 bông hoa màu trắng.

\(C_5^2\) cách chọn 2 bông hoa màu vàng.

Có 6 cách chọn 1 bông hoa màu đỏ.

Theo quy tắc nhân, số cách chọn ra 1 bông hoa màu trắng, 2 bông hoa màu vàng và 1 bông hoa màu đỏ là 5 . \(C_5^2\) . 6 = 300.

• Xét khả năng thứ ba: Chọn ra 2 bông hoa màu trắng, 1 bông hoa màu vàng và 1 bông hoa màu đỏ.

\(C_5^2\) cách chọn 2 bông hoa màu trắng.

Có 5 cách chọn 1 bông hoa màu vàng.

Có 6 cách chọn 1 bông hoa màu đỏ.

Theo quy tắc nhân, số cách chọn ra 2 bông hoa màu trắng, 1 bông hoa màu vàng và 1 bông hoa màu đỏ là \(C_5^2\) . 5 . 6 = 300.

Theo quy tắc cộng, số cách chọn 4 bông hoa đủ cả ba màu là: 375 + 300 + 300 = 975.

Vì thế, n(H) = 975.  

Vậy xác suất của biến cố H: “Bốn bông hoa chọn ra có cả ba màu” là 

\(P\left( H \right) = \frac{{n\left( H \right)}}{{n\left( \Omega \right)}} = \frac{{975}}{{1820}} = \frac{{15}}{{28}}\).

Lời giải

Hướng dẫn giải

Tổng số bông hoa là: 10 + 10 + 10 = 30 (bông).

Mỗi lần chọn 4 bông hoa từ 30 bông hoa cho ta một tổ hợp chập 4 của 30 phần tử. Do đó, không gian mẫu Ω gồm các tổ hợp chập 4 của 30 phần tử và \(n\left( \Omega \right) = C_{30}^4\).

Gọi biến cố H: “Bốn bông hoa chọn ra có cả ba màu”.

Việc chọn 4 bông hoa có cả ba màu là thực hiện một trong ba khả năng sau:

- Chọn ra 1 bông hoa màu trắng, 1 bông hoa màu vàng và 2 bông hoa màu đỏ;

- Chọn ra 1 bông hoa màu trắng, 2 bông hoa màu vàng và 1 bông hoa màu đỏ;

- Chọn ra 2 bông hoa màu trắng, 1 bông hoa màu vàng và 1 bông hoa màu đỏ;

• Xét khả năng thứ nhất: Chọn ra 1 bông hoa màu trắng, 1 bông hoa màu vàng và 2 bông hoa màu đỏ.

Có 10 cách chọn 1 bông hoa màu trắng.

Có 10 cách chọn 1 bông hoa màu vàng.

\(C_{10}^2\) cách chọn 2 bông hoa màu đỏ.

Theo quy tắc nhân, số cách chọn ra 1 bông hoa màu trắng, 1 bông hoa màu vàng và 2 bông hoa màu đỏ là 10 . 10 . \(C_{10}^2\) = 4 500.

• Xét khả năng thứ hai: Chọn ra 1 bông hoa màu trắng, 2 bông hoa màu vàng và 1 bông hoa màu đỏ.

Có 10 cách chọn 1 bông hoa màu trắng.

\(C_{10}^2\) cách chọn 2 bông hoa màu vàng.

Có 10 cách chọn 1 bông hoa màu đỏ.

Theo quy tắc nhân, số cách chọn ra 1 bông hoa màu trắng, 2 bông hoa màu vàng và 1 bông hoa màu đỏ là 10 . \(C_{10}^2\). 10 = 4 500.

• Xét khả năng thứ ba: Chọn ra 2 bông hoa màu trắng, 1 bông hoa màu vàng và 1 bông hoa màu đỏ.

\(C_{10}^2\) cách chọn 2 bông hoa màu trắng.

Có 10 cách chọn 1 bông hoa màu vàng.

Có 10 cách chọn 1 bông hoa màu đỏ.

Theo quy tắc nhân, số cách chọn ra 2 bông hoa màu trắng, 1 bông hoa màu vàng và 1 bông hoa màu đỏ là \(C_{10}^2\) . 10 . 10 = 4 500.

Theo quy tắc cộng, số cách chọn 4 bông hoa đủ cả ba màu là: 4 500 + 4 500 + 4 500 = 13 500.

Vì thế, n(H) = 13 500.

Vậy xác suất của biến cố H: “Bốn bông hoa chọn ra có cả ba màu” là 

\(P\left( H \right) = \frac{{n\left( H \right)}}{{n\left( \Omega \right)}} = \frac{{13\,\,500}}{{C_{30}^4}} = \frac{{100}}{{203}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay