Câu hỏi:
04/07/2022 756Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Tổng số bông hoa là: 15 + 15 = 30 (bông).
Mỗi cách lấy ra đồng thời 10 bông hoa từ 30 bông hoa cho ta một tổ hợp chập 10 của 30 phần tử. Do đó, không gian mẫu Ω gồm các tổ hợp chập 10 của 30 phần tử và \(n\left( \Omega \right) = C_{30}^{10}\).
Xét biến cố A: “Trong 10 bông hoa được chọn ra có ít nhất một bông màu trắng”.
Khi đó biến cố đối của biến cố A là biến cố \(\overline A \): “Trong 10 bông hoa được chọn ra không có một bông nào màu trắng”, tức là cả 10 bông hoa được chọn ra toàn màu vàng.
Mỗi cách lấy ra đồng thời 10 bông hoa màu vàng là một tổ hợp chập 10 của 15 phần tử.
Do đó \(n\left( {\overline A } \right) = C_{15}^{10}\).
Suy ra \(P\left( {\overline A } \right) = \frac{{n\left( {\overline A } \right)}}{{n\left( \Omega \right)}} = \frac{{C_{15}^{10}}}{{C_{30}^{10}}} = \frac{1}{{10005}}\).
Vậy xác suất của biến cố A là \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{1}{{10005}} = \frac{{10004}}{{10005}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Câu 4:
Hai bạn nữ Hoa, Thảo và hai bạn nam Dũng, Huy được xếp ngồi ngẫu nhiên vào bốn ghế đặt theo hàng dọc. Tính xác suất của mỗi biến cố:
“Bạn Thảo ngồi ghế đầu tiên”;
Câu 5:
Câu 6:
Một hộp có 4 tấm bìa cùng loại, mỗi tấm bìa được ghi một trong các số 1, 2, 3, 4; hai tấm bìa khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên đồng thời 3 tấm bìa từ trong hộp.
Tính số phần tử của không gian mẫu.
Câu 7:
Xét phép thử “Gieo một xúc xắc hai lần liên tiếp”.
Sự kiện “Số chấm trong lần gieo thứ hai là 6” tương ứng với biến cố nào của phép thử trên?
về câu hỏi!