Câu hỏi:
11/07/2024 2,901Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Tổng số bông hoa là: 10 + 10 + 10 = 30 (bông).
Mỗi lần chọn 4 bông hoa từ 30 bông hoa cho ta một tổ hợp chập 4 của 30 phần tử. Do đó, không gian mẫu Ω gồm các tổ hợp chập 4 của 30 phần tử và \(n\left( \Omega \right) = C_{30}^4\).
Gọi biến cố H: “Bốn bông hoa chọn ra có cả ba màu”.
Việc chọn 4 bông hoa có cả ba màu là thực hiện một trong ba khả năng sau:
- Chọn ra 1 bông hoa màu trắng, 1 bông hoa màu vàng và 2 bông hoa màu đỏ;
- Chọn ra 1 bông hoa màu trắng, 2 bông hoa màu vàng và 1 bông hoa màu đỏ;
- Chọn ra 2 bông hoa màu trắng, 1 bông hoa màu vàng và 1 bông hoa màu đỏ;
• Xét khả năng thứ nhất: Chọn ra 1 bông hoa màu trắng, 1 bông hoa màu vàng và 2 bông hoa màu đỏ.
Có 10 cách chọn 1 bông hoa màu trắng.
Có 10 cách chọn 1 bông hoa màu vàng.
Có \(C_{10}^2\) cách chọn 2 bông hoa màu đỏ.
Theo quy tắc nhân, số cách chọn ra 1 bông hoa màu trắng, 1 bông hoa màu vàng và 2 bông hoa màu đỏ là 10 . 10 . \(C_{10}^2\) = 4 500.
• Xét khả năng thứ hai: Chọn ra 1 bông hoa màu trắng, 2 bông hoa màu vàng và 1 bông hoa màu đỏ.
Có 10 cách chọn 1 bông hoa màu trắng.
Có \(C_{10}^2\) cách chọn 2 bông hoa màu vàng.
Có 10 cách chọn 1 bông hoa màu đỏ.
Theo quy tắc nhân, số cách chọn ra 1 bông hoa màu trắng, 2 bông hoa màu vàng và 1 bông hoa màu đỏ là 10 . \(C_{10}^2\). 10 = 4 500.
• Xét khả năng thứ ba: Chọn ra 2 bông hoa màu trắng, 1 bông hoa màu vàng và 1 bông hoa màu đỏ.
Có \(C_{10}^2\) cách chọn 2 bông hoa màu trắng.
Có 10 cách chọn 1 bông hoa màu vàng.
Có 10 cách chọn 1 bông hoa màu đỏ.
Theo quy tắc nhân, số cách chọn ra 2 bông hoa màu trắng, 1 bông hoa màu vàng và 1 bông hoa màu đỏ là \(C_{10}^2\) . 10 . 10 = 4 500.
Theo quy tắc cộng, số cách chọn 4 bông hoa đủ cả ba màu là: 4 500 + 4 500 + 4 500 = 13 500.
Vì thế, n(H) = 13 500.
Vậy xác suất của biến cố H: “Bốn bông hoa chọn ra có cả ba màu” là
\(P\left( H \right) = \frac{{n\left( H \right)}}{{n\left( \Omega \right)}} = \frac{{13\,\,500}}{{C_{30}^4}} = \frac{{100}}{{203}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Hai bạn nữ Hoa, Thảo và hai bạn nam Dũng, Huy được xếp ngồi ngẫu nhiên vào bốn ghế đặt theo hàng dọc. Tính xác suất của mỗi biến cố:
“Bạn Thảo ngồi ghế đầu tiên”;
Câu 4:
Câu 5:
Một hộp có 4 tấm bìa cùng loại, mỗi tấm bìa được ghi một trong các số 1, 2, 3, 4; hai tấm bìa khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên đồng thời 3 tấm bìa từ trong hộp.
Tính số phần tử của không gian mẫu.
Câu 6:
Xét phép thử “Gieo một xúc xắc hai lần liên tiếp”.
Sự kiện “Số chấm trong lần gieo thứ hai là 6” tương ứng với biến cố nào của phép thử trên?
75 câu trắc nghiệm Vectơ nâng cao (P1)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
5 câu Trắc nghiệm Phương sai và độ lệch chuẩn có đáp án (Thông hiểu)
28 câu Trắc nghiệm Mệnh đề có đáp án
Đề thi Học kì 1 Toán 10 - Bộ sách Kết nối tri thức - Đề 01
về câu hỏi!