Câu hỏi:

07/07/2022 207 Lưu

Cho tam giác ABC có BC = a, CA = b, AB = c. Hãy tính \(\overrightarrow {AB} .\overrightarrow {AC} \) theo a, b, c.

A. \[\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\];

B. \[\frac{{{b^2} + {c^2} - {a^2}}}{4}\];

C. \[{b^2} + {c^2} - {a^2}\];

D. \(\frac{{{b^2} + {c^2} - {a^2}}}{2}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là D

Cho tam giác ABC có BC = a, CA = b, AB = c. Hãy tính vecto AB (ảnh 1)

Ta có: \(\overrightarrow {AB} .\overrightarrow {AC} = AB.AC.c{\rm{os}}\left( {\overrightarrow {AB} .\overrightarrow {AC} } \right) = AB.AC.\cos BAC = bc.c{\rm{osBAC}}\)

Theo định lí cos, ta có:

\[{\rm{cosBAC = }}\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\]

\(\overrightarrow {AB} .\overrightarrow {AC} = bc.\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{b^2} + {c^2} - {a^2}}}{2}\).

Vậy \(\overrightarrow {AB} .\overrightarrow {AC} = \frac{{{b^2} + {c^2} - {a^2}}}{2}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow u .\overrightarrow v \) = 0;

B. Góc giữa hai vecto \(\overrightarrow u ,\overrightarrow v \) là 0° hoặc 180°;

C. \(\overrightarrow u .\overrightarrow v \) = 1;

D. Góc giữa hai vecto \(\overrightarrow u ,\overrightarrow v \) là 90°.

Lời giải

Đáp án đúng là B

Ta có: \(\overrightarrow u .\overrightarrow v = \left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|.c{\rm{os}}\left( {\overrightarrow u ,\overrightarrow v } \right)\)

\( \Leftrightarrow {\left( {\overrightarrow u .\overrightarrow v } \right)^2} = {\left[ {\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|.c{\rm{os}}\left( {\overrightarrow u ,\overrightarrow v } \right)} \right]^2} = {\overrightarrow u ^2}.{\overrightarrow v ^2}.c{\rm{o}}{{\rm{s}}^2}\left( {\overrightarrow u ,\overrightarrow v } \right)\)

Để \({\left( {\overrightarrow u .\overrightarrow v } \right)^2} = {\overrightarrow u ^2}.{\overrightarrow v ^2}\) thì \(c{\rm{o}}{{\rm{s}}^2}\left( {\overrightarrow u ,\overrightarrow v } \right) = 1 \Leftrightarrow \left[ \begin{array}{l}c{\rm{os}}\left( {\overrightarrow u ,\overrightarrow v } \right) = 1\\c{\rm{os}}\left( {\overrightarrow u ,\overrightarrow v } \right) = - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left( {\overrightarrow u ,\overrightarrow v } \right) = {0^0}\\\left( {\overrightarrow u ,\overrightarrow v } \right) = {180^0}\end{array} \right.\)

Vậy khi góc giữa hai vecto \(\overrightarrow u ,\overrightarrow v \) là 00 hoặc 1800 thì \({\left( {\overrightarrow u .\overrightarrow v } \right)^2} = {\overrightarrow u ^2}.{\overrightarrow v ^2}.\)

Câu 2

A. \(\overrightarrow a \left( {1; - 1} \right)\)\(\overrightarrow b \left( { - 1;1} \right)\).

B. \(\overrightarrow n \left( {1;1} \right)\)\(\overrightarrow k \left( {2;0} \right)\).

C. \(\overrightarrow u \left( {2;3} \right)\)\(\overrightarrow v \left( {4;6} \right)\).

D. \(z\left( {a;b} \right)\)\[\overrightarrow t \left( { - b;a} \right)\].

Lời giải

Đáp án đúng là D

Ta có: \(\overrightarrow a .\overrightarrow b = 1.\left( { - 1} \right) + \left( { - 1} \right).1 = - 1 + \left( { - 1} \right) = - 2 \ne 0.\) Suy ra hai vecto \(\overrightarrow a ,\overrightarrow b \) không vuông góc với nhau. Do đó A sai.

Ta có: \(\overrightarrow n .\overrightarrow k = 1.2 + 1.0 = 2 + 0 = 2 \ne 0.\) Suy ra hai vecto \(\overrightarrow n ,\overrightarrow k \) không vuông góc. Do đó B sai.

Ta có: \(\overrightarrow u .\overrightarrow v = 2.4 + 3.6 = 8 + 18 = 26 \ne 0.\) Suy ra hai vecto \(\overrightarrow u ,\overrightarrow v \) không vuông góc. Do đó C sai.

Ta có: \(\overrightarrow z .\overrightarrow t = a.\left( { - b} \right) + b.a = - ab + ab = 0.\) Suy ra hai vecto \(\overrightarrow z ,\overrightarrow t \) vuông góc với nhau. Do đó D đúng.

Câu 3

A. \(\overrightarrow a \).\(\overrightarrow b \)= 1;

B. \(\overrightarrow a \).\(\overrightarrow b \)= - 1;

C. \(\overrightarrow a \).\(\overrightarrow b \)= 0;

D. a.b = -1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\overrightarrow {MA} .\overrightarrow {MB} = \) MI2 + IA2;

B. \(\overrightarrow {MA} .\overrightarrow {MB} = \) MI2 + 2 IA2;

C. \(\overrightarrow {MA} .\overrightarrow {MB} = \) MI2 – IA2;

D. \(\overrightarrow {MA} .\overrightarrow {MB} = \) 2MI2 + IA2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. MA2 + MB2 + MC2 = 3MG2 + GA2 + GB2 + GC2;

B. MA2 + MB2 + MC2 = 3MG2;

C. MA2 + MB2 + MC2 = 3MG2 + (GA + GB + GC)2;

D. MA2 + MB2 + MC2 = 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP